
Azure e-book series

Getting started
with Azure Red Hat
OpenShift
An introduction

PREFACE ���1
	 Who this book is for��1
	 What this book covers��1

WHAT CAN AZURE DO FOR YOU?���������������������� 2

INTRODUCTION TO RED HAT OPENSHIFT�������� 3
	 Red Hat OpenShift Overview���������������������������������3
	 Business Value ���4
	 What do you get with OpenShift
	 as opposed to Kubernetes? �����������������������������������6
	 Concepts of OpenShift���8

AZURE RED HAT OPENSHIFT ���������������������������� 20
	 Architecture ��� 21
	 Management ���24
	 Security���24
	 Support ���25

SETTING UP THE CLUSTER, NETWORKING
AND SECURITY�� 26
	 Install the Azure CLI and sign in to Azure���������26
	 Create an Azure Active Directory tenant
	 for your cluster���27
	 Create the administrator user and
	 administrator security group�������������������������������28
	 Create an Azure Active Directory
	 app registration authentication�������������������������� 30
	 Restrict the cluster access to assigned
	 users and assign user access���������������������������������33
	 Create the cluster and connect it to
	 your existing Virtual Network �����������������������������35

ACCESSING THE CLUSTER ���������������������������������� 38
Via the Web UI ���38
Via OpenShift CLI���39

CREATING A MULTI-CONTAINER
RATINGS APPLICATION��������������������������������������40
	 Application Overview�� 40
	 Connect to the cluster and create a project����� 41
	 Deploy MongoDB��� 41
	 Deploy the ratings-api service���������������������������� 43
	 Deploy the ratings-web frontend using
	 S2I strategy�� 45
	 Create a route for the ratings-web frontend�� 45
	 Scaling the application and the cluster������������ 46
	 Controlling networking using
	 networking policies���47

USING AN APP TO BECOME FAMILIAR WITH
OPENSHIFT AND KUBERNETES ������������������������49
	 Application Overview�� 49
	 Deploy the OSToy application�����������������������������50
	 Explore Logging�� 54
	 Health Checks���55
	 Persistent Storage���58
	 Configuration - ConfigMaps, Secrets,
	 Environment Variables��� 61
	 Networking and Scaling ���������������������������������������62

CONCLUSION��64

© 2019 Microsoft Corporation and Red Hat. All rights reserved. This document is provided
“as is.” Information and views expressed in this document, including URL and other
internet website references, may change without notice. You bear the risk of using it.

Contents

Who this book
is for

What this book
covers

This guide is meant for developers who are looking to learn how to bolster their
application building and deployment capabilities by leveraging Azure and Red
Hat OpenShift for full-service deployment of fully managed OpenShift clusters.

In this guide, we will walk you through the ins and outs of using Azure’s development
tools on the OpenShift platform. We will begin by introducing you to Red Hat
OpenShift and the reasons why so many developers and operators choose this as
their cluster management platform and how they derive so much utility from it. After
learning why OpenShift is your preferred platform, you’ll learn how to get the most out
of it. We’ll explain everything you’ll need to know about Red Hat OpenShift, as well as
how Azure fits into the picture, starting with the fundamental concepts and building
blocks of OpenShift. Once you have a solid understanding of the basic OpenShift
concepts, a hands-on guide will teach you everything from how to set up your first
cluster, to management, to deploying data services, all powered by Azure.

1Getting Started with Azure Red Hat OpenShift

PREFACE

Whether you’re a professional developer or just write
code for fun, developing with Azure puts the latest
cloud technology and best-in-class developer tools at
your fingertips, making it easy to build cloud-native
applications in your preferred language.

With Azure, you can get work done faster, take your
development skills to the next level, and imagine and
build tomorrow’s applications.

Multiply your impact with:

	 	 A cloud platform

	 	 Developer tools

	 	 Management services

Integrated tightly together,
these form a true ecosystem
that enable you to create
amazing applications and
seamless digital experiences
that run on any device.

Take advantage of the incredible
and always growing capabilities
of Azure. Let’s dive deep
to see what you can do.

2Getting Started with Azure Red Hat OpenShift

WHAT CAN AZURE
DO FOR YOU?

Red Hat OpenShift
Overview

Red Hat OpenShift is an enterprise-ready Kubernetes container platform with full-stack
automated operations to manage hybrid cloud and multi-cloud deployments and is
optimized to improve developer productivity and promote innovation. With automated
operations and streamlined lifecycle management, RedHat OpenShift empowers
development teams to build and deploy new applications and helps operations teams
provision, manage, and scale a Kubernetes platforms.

Development teams have access to validated images and solutions from hundreds of
partners with security scanning and signing throughout the delivery process. They can
access on-demand images and get native access to a wide range of third-party cloud
services, all through a single platform.

Operations teams are given visibility into deployments wherever they are, and across
teams, with built-in logging and monitoring. Red Hat Kubernetes Operators embed
the unique application logic that enables the service to be functional, not simply
configured but tuned for performance and updated and patched from the OS with a
single touch. Red Hat OpenShift is truly a one-stop-shop that enables organizations to
unleash the power of their IT and development teams.

3Getting Started with Azure Red Hat OpenShift

INTRODUCTION TO
RED HAT OPENSHIFT

Business Value Over 1,000 customers trust Red Hat OpenShift to change the way they deliver
applications, improve their relationships with customers, and gain competitive
advantages to be leaders in their industries. Per a Forrester Total Economic Impact
commissioned study, development teams of the organizations using OpenShift Hosted
can better meet business demand and support important IT initiatives, even as they
have shifted development cost structures away from IT infrastructure and platform
related costs. Benefits seen by these customers include:

•	 Developers experience a 90% productivity lift for initial application
development, testing, and deployment. Developers use OpenShift’s templated
runtime images, saving days of time and effort for both greenfield projects
and legacy application modernization projects. Over three years and a
cumulative total of 454 applications, shorter development cycles are worth
more than $2.2 million in productivity gains to the composite organization.

•	 The hosted OpenShift solution reduces elapsed wait time for environment
creation by 98%. Red Hat’s automated management of environment creation
reduces the amount of downtime developers faced before using the solution.
Over three years and a cumulative total of 454 applications developed or
modernized, developers save 78 hours per application. The organization
recaptures 10% of this productivity and establishes a shorter environment
creation cycle, worth a cumulative $121,000 over three years.

•	 Automatic scaling and load balancing managed by Red Hat relieve DevOps
and operations teams, providing a 20% lift in operational efficiency.
Customers no longer worry about manual scaling by monitoring memory
and CPU utilization because the platform autoscales services/pods to fit
their computing needs efficiently. Over three years and a cumulative total
of 45 employees, the managed services-driven operational benefit is worth
$693,000 to the organization.

•	 Red Hat secures and maintains the platform, saving over 3,000 hours of
customer labor per year. Red Hat is responsible for the security, maintenance,
and major upgrades of the OpenShift Dedicated platform. Over three years
and a cumulative total of 9,270 hours and 24 events, this managed services-
driven benefit is worth $332,000 to the organization.

OpenShift helps
users deliver timely
and compelling
applications and
features across
their complex and
heterogeneous IT
environments and
supports key IT
initiatives such as
containerization,
microservices, and
cloud migration
strategies.

4Getting Started with Azure Red Hat OpenShift

•	 Operations and administrative costs decrease by 2 FTEs each year. Migrating
and modernizing legacy applications using the service improve their
availability and performance, reducing the amount of administrative and
operational time the organization spent managing legacy applications in
place. The shift away from internally managed legacy solutions to OSD
deployments is worth more than $974,000 to the organization.

•	 IT infrastructure cost reductions: Developing on the OpenShift platform
requires fewer testing and production servers due to its support of
containerization, microservices, and multitenancy, contributing to lower
infrastructure costs for interviewed organizations even as their application
development efforts expand. Forrester’s interviews with three existing
customers and subsequent financial analysis found that an organization based
on these interviewed organizations experienced benefits of $4.3M over three
years versus costs of $981K, adding up to a net present value (NPV) of $3.4M
and an ROI of 343%.

Read the full Forrester TEI report for more information on
how OpenShift drove significant business results.

Security and
maintenance
efficiencies

$331,965 over
three-year analysis

Reduction in
developer wait time

$120,632 over
three-year analysis

Automatic scaling
and load balancing

$692,654 over
three-year analysis

Operations and
admin cost savings

$974,267 over
three-year analysis

Developer
productivity lift

$2,227,056 over
three-year analysis

5Getting Started with Azure Red Hat OpenShift

https://www.redhat.com/en/resources/economic-impact-openshift-dedicated-analyst-paper
https://www.redhat.com/en/resources/economic-impact-openshift-dedicated-analyst-paper

OpenShift is often referred to as “Enterprise Kubernetes” – but don’t let that convince
you that they are one and the same. It’s also not fair to provide an apples-to-apples
comparison of Kubernetes vs. OpenShift, since Kubernetes is an open source project,
while OpenShift is an enterprise grade product with a high level of service offerings.

Running containers in production with Kubernetes requires additional tools and
resources, such as an image registry, storage management, networking solutions,
and logging and monitoring tools, all of which must be versioned and tested
together. Building container-based applications requires even more integration
work with middleware, frameworks, databases, and CI/CD tools. Azure Red Hat
OpenShift combines all this into a single platform, bringing ease of operations
to IT teams while giving application teams what they need to execute. All of
these topics will be covered in greater detail later in the guide, but with this
in mind, let’s take a look at some of the key differences between the two.

•	 Ease of deployment: Deploying an application in Kubernetes can be
time consuming. This involves pulling your GitHub code onto a machine,
spinning up a container, hosting it in a registry like Docker Hub and finally
understanding your CI/CD pipeline, which can be very complicated..
OpenShift, on the other hand, automates the heavy lifting and the backend
work, only requiring you to create a project and upload your code.

•	 Security: Today, we see that most Kubernetes projects are worked on in
teams of multiple developers and operators. Even though Kubernetes now
supports things like RBAC and IAM, it still requires a manual setup and
configuration, which takes time. Red Hat and OpenShift have done a great
job of identifying security best practices after years of experience, which are
available to customers out of the box. You simply add new users and OpenShift
will handle things like name-spacing and creating different security policies.

•	 Flexibility: In using Azure Red Hat OpenShift, you’re able to take advantage
of well-known best practices of deployment, management and updating.
All the heavy lifting within the backend is taken care of for you without
the need for much finger pushing, enabling you to influence your apps
quicker. While it’s nice for teams that like being told how to get things
done and benefit from a streamlined approach, the Kubernetes platform
allows you to manually customize your CI/CD DevOps pipeline which offers
more room for flexibility and creativity when developing your processes.

What do you get
with OpenShift
as opposed to
Kubernetes?

6Getting Started with Azure Red Hat OpenShift

•	 Day to Day Operations: Clusters are comprised of a group of multiple VMs
and inevitably your operations teams will need to spin up new VMs that
need to be added to a cluster. The configuration process through Kubernetes
can be time consuming and complex, requiring scripts to be developed
to set up things like self-registration or cloud automation. With Azure Red
Hat OpenShift, cluster provisioning, scaling, and upgrade operations are
automated and managed by the platform.

•	 Management: While you can take advantage of the Kubernetes default
dashboards that come with any distribution, most developers need something
more robust Azure Red Hat OpenShift offers great web console that builds
on the Kubernetes API’s and capabilities for operations teams to manage their
workloads.

7Getting Started with Azure Red Hat OpenShift

Containers

The basic units of Azure Red Hat OpenShift applications are called containers. Linux
container technologies are lightweight mechanisms for isolating running processes so
that they are limited to interacting with only their designated resources.

Many application instances can be running in containers on a single host without
visibility into each other’s processes, files, network, and so on. Typically, each container
provides a single service (often called a “micro-service”), such as a web server or a
database, though containers can be used for arbitrary workloads.

Images

Containers in Azure Red Hat OpenShift are based on Docker-formatted container
images. An image is a binary that includes all the requirements for running a single
container, as well as metadata describing its needs and capabilities.

You can think of it as a packaging technology. Containers only have access to resources
defined in the image unless you give the container additional access when creating
it. By deploying the same image in multiple containers across multiple hosts and load
balancing between them, Azure Red Hat OpenShift can provide redundancy and
horizontal scaling for a service packaged into an image.

Concepts of
OpenShift

8Getting Started with Azure Red Hat OpenShift

Pods and Services

Azure Red Hat OpenShift leverages the Kubernetes concept of a pod, which is one or
more container deployed together on one host, and the smallest compute unit that can
be defined, deployed, and managed.

Pods are the rough equivalent of a machine instance (physical or virtual) to a container.
Each pod is allocated its own internal IP address, therefore owning its entire port space,
and containers within pods can share their local storage and networking.

Pods have a life cycle; they are defined, then they are assigned to run on a node, then
they run until their container(s) exit or they are removed for some other reason. Pods,
depending on policy and exit code, may be removed after exiting, or may be retained
in order to enable access to the logs of their containers.

Azure Red Hat OpenShift treats pods as largely immutable; changes cannot be made
to a pod definition while it is running. Azure Red Hat OpenShift implements changes
by terminating an existing pod and recreating it with modified configuration, base
image(s), or both. Pods are also treated as expendable, and do not maintain state when
recreated. Therefore, pods should usually be managed by higher-level controllers,
rather than directly by users.

9Getting Started with Azure Red Hat OpenShift

Projects and Users

A project is a Kubernetes namespace with additional annotations and is the central
vehicle by which access to resources for regular users is managed. A project allows
a community of users to organize and manage their content in isolation from other
communities. Users must be given access to projects by administrators, or if allowed to
create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.
•	 The mandatory name is a unique identifier for the project and is most visible

when using the CLI tools or API. The maximum name length is 63 characters.

•	 The optional displayName is how the project is displayed in the web console
(defaults to name).

•	 The optional description can be a more detailed description of the project
and is also visible in the web console.

Developers and administrators can interact with projects using the
CLI or the web console.

10Getting Started with Azure Red Hat OpenShift

Builds and Image Streams

A build is the process of transforming input parameters into a resulting object. Most
often, the process is used to transform input parameters or source code into a runnable
image. A BuildConfig object is the definition of the entire build process.

Azure Red Hat OpenShift leverages Kubernetes by creating Docker-formatted
containers from build images and pushing them to a container image registry.

Build objects share common characteristics: inputs for a build, the need to complete
a build process, logging the build process, publishing resources from successful
builds, and publishing the final status of the build. Builds take advantage of resource
restrictions, specifying limitations on resources such as CPU usage, memory usage, and
build or pod execution time.

The Azure Red Hat OpenShift build system provides extensible support for build
strategies that are based on selectable types specified in the build API. There are three
primary build strategies available:

•	 Docker build
•	 Source-to-Image (S2I) build
•	 Custom build

By default, Docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For Docker and
S2I builds, the resulting objects are runnable images. For Custom builds, the resulting
objects are whatever the builder image author has specified.

Additionally, the Pipeline build strategy can be used to implement sophisticated
workflows:

•	 continuous integration
•	 continuous deployment

11Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/index.html#defining-a-buildconfig

Source-to-Image (S2I)

Source-to-Image (S2I) is a toolkit and workflow for building reproducible container
images from source code. S2I produces ready-to-run images by injecting source
code into a container image and letting the container prepare that source code for
execution. By creating self-assembling builder images, you can version and control
your build environments exactly like you use container images to version your runtime
environments.

For a dynamic language like Ruby, the build-time and run-time environments are
typically the same. Starting with a builder image that describes this environment
- with Ruby, Bundler, Rake, Apache, GCC, and other packages needed to set up and
run a Ruby application installed - source-to-image performs the following steps:

1.	 Start a container from the builder image with the application source injected
into a known directory

2.	 The container process transforms that source code into the appropriate
runnable setup - in this case, by installing dependencies with Bundler and
moving the source code into a directory where Apache has been pre-
configured to look for the Ruby config.ru file.

3.	 Commit the new container and set the image entrypoint to be a script
(provided by the builder image) that will start Apache to host the Ruby
application.

For compiled languages like C, C++, Go, or Java, the dependencies necessary for
compilation might dramatically outweigh the size of the actual runtime artifacts. To
keep runtime images slim, S2I enables a multiple-step build processes, where a binary
artifact such as an executable or Java WAR file is created in the first builder image,
extracted, and injected into a second runtime image that simply places the executable
in the correct location for execution.

For example, to create a reproducible build pipeline for Tomcat (the popular Java
webserver) and Maven:

1.	 Create a builder image containing OpenJDK and Tomcat that expects to have
a WAR file injected.

2.	 Create a second image that layers on top of the first image Maven and any
other standard dependencies, and expects to have a Maven project injected.

3.	 Invoke source-to-image using the Java application source and the Maven
image to create the desired application WAR.

4.	 Invoke source-to-image a second time using the WAR file from the previous
step and the initial Tomcat image to create the runtime image.

12Getting Started with Azure Red Hat OpenShift

By placing our build logic inside of images, and by combining the images into multiple
steps, we can keep our runtime environment close to our build environment (same JDK,
same Tomcat JARs) without requiring build tools to be deployed to production.

The goals and benefits of using Source-To-Image (S2I) as your build strategy are:
•	 Reproducibility: Allow build environments to be tightly versioned by

encapsulating them within a container image and defining a simple interface
(injected source code) for callers. Reproducible builds are a key requirement to
enabling security updates and continuous integration in containerized infra-
structure, and builder images help ensure repeatability as well as the ability to
swap runtimes.

•	 Flexibility: Any existing build system that can run on Linux can be run inside
of a container, and each individual builder can also be part of a larger pipeline.
In addition, the scripts that process the application source code can be injected
into the builder image, allowing authors to adapt existing images to enable
source handling.

•	 Speed: Instead of building multiple layers in a single Docker file, S2I
encourages authors to represent an application in a single image layer. This
saves time during creation and deployment and allows for better control over
the output of the final image.

•	 Security: Docker files are run without many of the normal operational controls
of containers, usually running as root and having access to the container
network. S2I can be used to control what permissions and privileges are
available to the builder image since the build is launched in a single container.
In concert with platforms like OpenShift, source-to-image can enable admins
to tightly control what privileges developers have at build time.

13Getting Started with Azure Red Hat OpenShift

Replication Controllers

A replication controller ensures that a specified number of replicas of a pod are running
at all times. If pods exit or are deleted, the replication controller acts to instantiate
more, up to the defined number. Likewise, if there are more running than desired, it
deletes as many as necessary to match the defined amount.

A replication controller configuration consists of:
•	 The number of replicas desired (which can be adjusted at runtime).
•	 A pod definition to use when creating a replicated pod.
•	 A selector for identifying managed pods.
•	 A selector is a set of labels assigned to the pods that are managed by the

replication controller. These labels are included in the pod definition that the
replication controller instantiates. The replication controller uses the selector
to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it
does not track either. Rather, this would require its replica count to be adjusted by an
external auto-scaler.

A replication controller is a core Kubernetes object called ReplicationController.
The following is an example ReplicationController definition:

(1) The number of copies of the pod to run. (2) The label selector of the pod to run. (3) A template for the pod
the controller creates. (4) Labels on the pod should include those from the label selector. (5) The maximum
name length after expanding any parameters is 63 characters.

apiVersion: v1
kind: ReplicationController
metadata:
	 name: frontend-1
spec:
	 replicas: 1 (1)
	 selector: (2)
		 name: frontend
	 template: (3)
		 metadata:
			 labels: (4)
				 name: frontend (5)
		 spec:
			 containers:
				 - image: openshift/hello-openshift
					 name: helloworld
					 ports:
				 - containerPort: 8080
					 protocol: TCP
			 restartPolicy: Always

14Getting Started with Azure Red Hat OpenShift

https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/

Replica Set

Similar to a replication controller, a replica set ensures that a specified number of
pod replicas are running at any given time. The difference between a replica set and
a replication controller is that a replica set supports set-based selector requirements
whereas a replication controller only supports equality-based selector requirements.

Only use replica sets if you require custom update orchestration or do not require
updates at all, otherwise, use Deployments. Replica sets can be used independently,
but are used by deployments to orchestrate pod creation, deletion, and updates.
Deployments manage their replica sets automatically, provide declarative updates
to pods, and do not have to manually manage the replica sets that they create.

apiVersion: apps/v1
kind: ReplicaSet
metadata:
	 name: frontend-1
	 labels:
		 tier: frontend
spec:
	 replicas: 3
	 selector: (1)
		 matchLabels: (2)
			 tier: frontend
		 matchExpressions: (3)
		 - {key: tier, operator: In, values: [frontend]}
	 template:
		 metadata:
			 labels:
				 tier: frontend
		 spec:
			 containers:
			 - image: openshift/hello-openshift
				 name : helloworld
				 ports:
				 - containerPort: 8080
					 protocol: TCP
			 restartPolicy: Always

(1) A label query over a set of resources. The result of matchLabels and matchExpressions are logically
conjoined. (2) Equality-based selector to specify resources with labels that match the selector. (3) Set-based
selector to filter keys. This selects all resources with key equal to tier and value equal to frontend.

15Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/deployments.html#replication-controllers

Jobs

A job is similar to a replication controller, in that its purpose is to create pods for
specific reasons. The difference is that replication controllers are designed for pods
that will be continuously running, whereas jobs are for one-time pods. A job tracks
any successful completions and when the specified amount of completions have been
reached, the job itself is completed.

The following example computes π to 2000 places, prints it out, then completes:

apiVersion: extensions/v1
kind: Job
metadata:
	 name: pi
spec:
	 selector:
		 matchLabels:
			 app: pi
	 template:
		 metadata:
			 name: pi
			 labels:
			 app: pi
	 spec:
		 containers:
		 - name: pi
			 image: perl
			 command:	 [“perl”, “-Mbignum=bpi”, “-wle”,
						 “print bpi(2000)”]
	 restartPolicy: Never

See the Jobs topic for more information on how to use jobs.

16Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/jobs.html#dev-guide-jobs

Deployments and Deployment Configurations

Building on replication controllers, Azure Red Hat OpenShift adds expanded
support for the software development and deployment lifecycle with the concept
of deployments. In the simplest case, a deployment just creates a new replication
controller and lets it start up pods. However, Azure Red Hat OpenShift deployments
also provide the ability to transition from an existing deployment of an image to a new
one and also define hooks to be run before or after creating the replication controller.

The Azure Red Hat OpenShift DeploymentConfig object defines the following details of
a deployment:

1.	 The elements of a ReplicationController definition.
2.	 Triggers for creating a new deployment automatically.
3.	 The strategy for transitioning between deployments.
4.	 Life cycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer
pod manages the deployment (including scaling down the old replication controller,
scaling up the new one, and running hooks). The deployment pod remains for an
indefinite amount of time after it completes the deployment in order to retain its
logs of the deployment. When a deployment is superseded by another, the previous
replication controller is retained to enable easy rollback if needed.

For detailed instructions on how to create and interact with deployments,
refer to Deployments.

17Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/basic_deployment_operations.html#dev-guide-basic-deployment-operations

Here is an example DeploymentConfig definition with some omissions and callouts:

apiVersion: v1
kind: DeploymentConfig
metadata:
	 name: frontend
spec:
	 replicas: 5
	 selector:
		 name: frontend
	 template: { ... }
	 triggers:
	 - type: ConfigChange (1)
	 - imageChangeParams:
			 automatic: true
			 containerNames:
			 - helloworld
			 from:
				 kind: ImageStreamTag
				 name: hello-openshift:latest
		 type: ImageChange (2)
	 strategy:
		 type: Rolling (3)

(1) A ConfigChange trigger causes a new deployment to be created any time the replication controller
template changes. (2) An ImageChange trigger causes a new deployment to be created each time a new
version of the backing image is available in the named image stream. (3) The default Rolling strategy makes
a downtime-free transition between deployments.

18Getting Started with Azure Red Hat OpenShift

Routes

An Azure Red Hat OpenShift route exposes a service at a host name, such as www.
example.com, so that external clients can reach it by name.

DNS resolution for a host name is handled separately from routing. Your administrator
may have configured a DNS wildcard entry that will resolve to the Azure Red Hat
OpenShift node that is running the Azure Red Hat OpenShift router. If you are using a
different host name you may need to modify its DNS records independently to resolve
to the node that is running the router.

Each route consists of a name (limited to 63 characters), a service selector, and an
optional security configuration.

Templates

A template describes a set of objects that can be parameterized and processed to
produce a list of objects for creation by Azure Red Hat OpenShift. A template can
be processed to create anything you have permission to create within a project, for
example services, build configurations, and deployment configurations. A template
may also define a set of labels to apply to every object defined in the template.

You can create a list of objects from a template using the CLI or, if a template has been
uploaded to your project or the global template library, using the web console. For a
curated set of templates, see the OpenShift Image Streams and Templates library.

19Getting Started with Azure Red Hat OpenShift

Running containers in production with Kubernetes requires additional tools and
resources, such as an image registry, storage management, networking solutions, and
logging and monitoring tools, all of which must be versioned and tested together.
Building container-based applications requires even more integration work with
middleware, frameworks, databases, and CI/CD tools. Azure Red Hat OpenShift extends
Kubernetes and combines all this into a single platform, bringing ease of operations to
IT teams while giving application teams what they need to execute.

Azure Red Hat OpenShift is jointly engineered, operated, and supported by Red
Hat and Microsoft to provide an integrated support experience. There are no
virtual machines to operate, and no patching is required. Master, infrastructure and
application nodes are patched, updated, and monitored on your behalf by Red Hat
and Microsoft. Your Azure Red Hat OpenShift clusters are deployed into your Azure
subscription and are included on your Azure bill.

You can choose your own registry, networking, storage, and CI/CD solutions, or use the
built-in solutions for automated source code management, container and application
builds, deployments, scaling, health management, and more. Azure Red Hat OpenShift
provides an integrated sign-on experience through Azure Active Directory.

In just minutes, deploy Red Hat OpenShift clusters on Azure for:
•	 Enterprise grade operations, security and compliance with an integrated

support experience.

•	 Empowering developers to innovate with productivity through built-in CI/CD
pipelines, then easily connect your applications to hundreds of Azure services
such as MySQL, PostgreSQL, Redis, Azure Cosmos DB, and more.

•	 Scalability on your terms where you can start a highly available cluster with
four application nodes in a few minutes, then scale as your application demand
changes; plus, get your choice of standard, high-memory, or high-CPU
application nodes.

With Azure Red
Hat OpenShift, you
can deploy fully
managed Red Hat
OpenShift clusters
without worrying
about building
and managing the
infrastructure to
run it.

20Getting Started with Azure Red Hat OpenShift

AZURE RED HAT
OPENSHIFT

Azure Red Hat OpenShift has a microservices-based architecture of smaller, decoupled
units that work together. It runs on top of a Kubernetes cluster, with data about the
objects stored in etcd, a reliable clustered key-value store. Those services are broken
down by function:

•	 REST APIs, which expose each of the core objects.

•	 Controllers, which read those APIs, apply changes to other objects,
and report status or write back to the object.

Users make calls to the REST API to change the state of the system. Controllers use
the REST API to read the user’s desired state, and then try to bring the other parts of
the system into sync. For example, when a user requests a build they create a “build”
object. The build controller sees that a new build has been created, and runs a process
on the cluster to perform that build. When the build completes, the controller updates
the build object via the REST API and the user sees that their build is complete.

Architecture

21Getting Started with Azure Red Hat OpenShift

To make this possible, controllers leverage a reliable stream of changes to the system
to sync their view of the system with what users are doing. This event stream pushes
changes from etcd to the REST API and then to the controllers as soon as changes
occur, so changes can ripple out through the system very quickly and efficiently.
However, since failures can occur at any time, the controllers must also be able to get
the latest state of the system at startup, and confirm that everything is in the right
state. This resynchronization is important, because it means that even if something
goes wrong, the operator can restart the affected components and the system double
checks everything before continuing. The system should eventually converge to the
user’s intent, since the controllers can always bring the system into sync.

Within Azure Red Hat OpenShift, Kubernetes manages containerized applications
across a set of containers or hosts and provides mechanisms for deployment,
maintenance, and application-scaling. The container runtime packages, instantiates,
and runs containerized applications. A Kubernetes cluster consists of one or more
masters and a set of nodes.

Master, infrastructure and application nodes

The master nodes are hosts that contain the control plane components, including
the API server, controller manager server, and etcd. The masters manage nodes in its
Kubernetes cluster and schedules pods to run on those nodes.

A node provides the runtime environments for containers. Each node in a Kubernetes
cluster has the required services to be managed by the master. Nodes also have the
required services to run pods, including the container runtime, a kubelet, and a service
proxy.

Each node also runs a simple network proxy that reflects the services defined in the API
on that node. This allows the node to do simple TCP and UDP stream forwarding across
a set of back ends.

Azure Red Hat OpenShift creates nodes that run on Azure Virtual Machines that are
connected to Azure Premium SSD disks for storage.

22Getting Started with Azure Red Hat OpenShift

Container registry

Azure Red Hat OpenShift provides an integrated container image registry called
OpenShift Container Registry (OCR) that adds the ability to automatically provision
new image repositories on demand. This provides users with a built-in location for
their application builds to push the resulting images.

Whenever a new image is pushed to OCR, the registry notifies Azure Red Hat
OpenShift about the new image, passing along all the information about it, such
as the namespace, name, and image metadata. Different pieces of Azure Red Hat
OpenShift react to new images, creating new builds and deployments.

Azure Red Hat OpenShift can also utilize any server implementing the container
image registry API as a source of images, including the Docker Hub and Azure
Container Registry.

23Getting Started with Azure Red Hat OpenShift

As a managed service, Microsoft and Red Hat:
•	 Manage and monitor all the underlying virtual machines and infrastructure
•	 Manage environment patches
•	 Secure the cluster

So that you can focus on what matters most, developing great applications.

The Azure Red Hat OpenShift and Kubernetes APIs authenticate users who present
credentials via Azure Active Directory (Azure AD) integration, and then authorize them
based on their role.

The authentication layer identifies the user associated with requests to the Azure Red
Hat OpenShift API. The authorization layer then uses information about the requesting
user to determine if the request should be allowed.

Authorization is handled in the Azure Red Hat OpenShift policy engine, which defines
actions like “create pod” or “list services” and groups them into roles in a policy
document. Roles are bound to users or groups by the user or group identifier. When a
user or service account attempts an action, the policy engine checks for one or more
of the roles assigned to the user (e.g., customer administrator or administrator of the
current project) before allowing it to continue.

The relationships between cluster roles, local roles, cluster role bindings, local role
bindings, users, groups and service accounts are illustrated below.

Management

Security

PROJECT

CLUSTER ROLE
BINDING
User 3 can cluster
admin in all projects

CLUSTER ROLE
(Cluster Admin)

Rule Rule

User 3

LOCAL ROLE
BINDING
Group 1 can view
in project

CLUSTER ROLE
(View)

Rule Rule

Group 1

LOCAL ROLE
BINDING
User 1 can view
in project

CLUSTER ROLE
(Edit)

Rule Rule

User 1

LOCAL ROLE
BINDING
User 2 can admin
in project

CLUSTER ROLE
(Admin)

Rule Rule

User 2Service Account (Bot)

LOCAL ROLE
BINDING
Bot can interact with
specific resources

LOCAL ROLE
(Bot)

Rule Rule

24Getting Started with Azure Red Hat OpenShift

Support Azure Red Hat OpenShift is unique in the way support is managed. Microsoft and Red
Hat Site Reliability Engineers (SREs) work together ensuring the smooth operation of
the service.

Customers request support in the Azure portal, and the requests are triaged and
addressed by Microsoft and Red Hat engineers to quickly address customer support
requests, whether those are at the Azure platform level or at the OpenShift level.

25Getting Started with Azure Red Hat OpenShift

Install the Azure CLI

You’ll need to run Azure CLI commands to provision the cluster. The Azure CLI is a
command-line tool providing a great experience for managing Azure resources. The
CLI is designed to make scripting easy, query data, support
long-running operations, and more.

Azure Red Hat OpenShift requires version 2.0.65 or higher of the Azure CLI.
If you’ve already installed the Azure CLI, you can check which version you have
by running:

az --version

The first line of output will have the CLI version, for example azure-cli (2.0.65).

Alternatively, you can use the Azure Cloud Shell. When using the Azure Cloud Shell, be
sure to select the Bash environment.

Sign in to Azure

If you’re running the Azure CLI locally, open a Bash command shell and run az login to
sign in to Azure.

az login

If you have access to multiple subscriptions, run az account set -s {subscription ID}
replacing {subscription ID} with the subscription you want to use.

Install the Azure
CLI and sign in to
Azure

26Getting Started with Azure Red Hat OpenShift

SETTING UP THE CLUSTER,
NETWORKING AND SECURITY

https://docs.microsoft.com/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/azure/cloud-shell/overview

Create an Azure
Active Directory
tenant for your
cluster

Microsoft Azure Red Hat OpenShift requires an Azure Active Directory (Azure AD)
tenant in which to create your cluster. A tenant is a dedicated instance of Azure AD
that an organization or app developer receives when they create a relationship with
Microsoft by signing up for Azure, Microsoft Intune, or Microsoft 365. Each Azure AD
tenant is distinct and separate from other Azure AD tenants and has its own work and
school identities and app registrations.

If you don’t already have an Azure AD tenant, follow these instructions to create one,
otherwise, you can skip to creating the administrator user and administrator security
group.

1.	 Sign in to the Azure portal using the account you wish to associate with your
Azure Red Hat OpenShift cluster.

2.	 Open the Azure Active Directory blade to create a new tenant (also known as a
new Azure Active Directory).

3.	 Provide an Organization name.
4.	 Provide an Initial domain name. This will have onmicrosoft.com appended to it.

You can reuse the value for Organization name here.
5.	 Choose a country or region where the tenant will be created.
6.	 Click Create.
7.	 After your Azure AD tenant is created, select the Click here to manage your

new directory link. Your new tenant name should be displayed in
the upper-right of the Azure portal:

8.	 Make note of the tenant ID so you can later specify where to create your Azure
Red Hat OpenShift cluster. In the portal, you should now see the Azure Active
Directory overview blade for your new tenant. Select Properties and copy the
value for your Directory ID. We will refer to this value as {tenant id} in the
Create an Azure Red Hat OpenShift cluster section.

27Getting Started with Azure Red Hat OpenShift

https://docs.microsoft.com/azure/active-directory/develop/quickstart-create-new-tenant
https://portal.azure.com/
https://portal.azure.com/#create/Microsoft.AzureActiveDirectory

Create the
administrator user
and administrator
security group

Microsoft Azure Red Hat OpenShift needs permissions to perform tasks on behalf
of your cluster. If your organization doesn’t already have an Azure Active Directory
(Azure AD) user, Azure AD security group, or an Azure AD app registration to use as
the service principal, follow these instructions to create them.

Create a new Azure Active Directory user

In the Azure portal, ensure that your tenant appears under your user name in the top
right of the portal:

If the wrong tenant is displayed, click your user name in the top right, then click
Switch Directory, and select the correct tenant from the All Directories list. Create a
new Azure Active Directory global administrator user to sign in to your Azure Red
Hat OpenShift cluster.

1.	 Go to the Users-All users blade.
2.	 Click +New user to open the User pane.
3.	 Enter a Name for this user.
4.	 Create a User name based on the name of the tenant you created,

with .onmicrosoft.com appended at the end.
For example, yourUserName@yourTenantName.onmicrosoft.com.
Write down this user name. You’ll need it to sign into your cluster.

5.	 Click Directory role to open the directory role pane, and select Global
administrator and then click Ok at the bottom of the pane.

6.	 In the User pane, click Show Password and record the temporary password.
After you sign in the first time, you’ll be prompted to reset it.

7.	 At the bottom of the pane, click Create to create the user.

28Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/
https://portal.azure.com/#blade/Microsoft_AAD_IAM/UsersManagementMenuBlade/AllUsers

Create a new Azure Active Directory security group

To grant cluster admin access, memberships in an Azure AD security group are synced
into the OpenShift group “osa-customer-admins”. If not specified, no cluster admin
access will be granted.

1.	 Open the Azure Active Directory groups blade.
2.	 Click +New Group.
3.	 Provide a group name and description.
4.	 Set Group type to Security.
5.	 Set Membership type to Assigned. Add the Azure AD user that you created in

the earlier step to this security group.
6.	 Click Members to open the Select members pane.
7.	 In the members list, select the Azure AD user that you created above.
8.	 At the bottom of the portal, click on Select and then Create to create the

security group. Write down the Group ID value.
9.	 When the group is created, you will see it in the list of all groups. Click on the

new group.
10.	 On the page that appears, copy down the Object ID. We will refer to this value

as {group id} in the Create an Azure Red Hat OpenShift cluster section.

29Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/GroupsManagementMenuBlade/AllGroups

If your organization doesn’t already have an Azure Active Directory
(Azure AD) app registration to use as a service principal, follow these instructions to
create one.

1.	 Open the App registrations blade and click +New registration.
2.	 In the Register an application pane, enter a name for your application

registration.
3.	 Ensure that under Supported account types that Accounts in this

organizational directory only is selected. This is the most secure choice.
4.	 We will add a redirect URI later once we know the URI of the cluster. Click the

Register button to create the Azure AD application registration.
5.	 On the page that appears, copy down the Application (client) ID. We will refer

to this value as {app id} in the Create an Azure Red Hat OpenShift cluster
section.

Create an Azure
Active Directory app
registration for
authentication

30Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/RegisteredAppsPreview

Create a client secret

Generate a client secret for authenticating your app to Azure Active Directory.
1.	 In the Manage section of the app registrations page, click Certificates

& secrets.
2.	 On the Certificates & secrets pane, click +New client secret. The Add a client

secret pane appears.
3.	 Provide a Description.
4.	 Set Expires to the duration you prefer, for example In 2 Years.
5.	 Click Add and the key value will appear in the Client secrets section of

the page.
6.	 Copy down the key value. We will refer to this value as {secret} in the Create an

Azure Red Hat OpenShift cluster section.

31Getting Started with Azure Red Hat OpenShift

Add API permissions

1.	 In the Manage section click API permissions.
2.	 Click Add permission and select Azure Active Directory Graph then

Delegated permissions.
3.	 Expand User on the list below and make sure User.Read is enabled.
4.	 Scroll up and select Application permissions.
5.	 Expand Directory on the list below and enable Directory.ReadAll
6.	 Click Add permissions to accept the changes.
7.	 The API permissions panel should now show both User.Read and

Directory.ReadAll. Please note the warning in Admin consent required column
next to Directory.ReadAll.

8.	 If you are the Azure Subscription Administrator, click Grant admin consent for
Subscription Name below. If you are not the Azure Subscription Administrator,
request the consent from your administrator.

32Getting Started with Azure Red Hat OpenShift

Applications registered in an Azure Active Directory (Azure AD) tenant are, by default,
available to all users of the tenant who authenticate successfully. Azure AD allows
tenant administrators and developers to restrict an app to a specific set of users or
security groups in the tenant.

Update the app to enable user assignment

1.	 Go to the Azure portal and sign-in as a Global Administrator.
2.	 On the top bar, select the signed-in account.
3.	 Under Directory, select the Azure AD tenant where the app will be registered.
4.	 In the navigation on the left, select Azure Active Directory. If Azure Active

Directory is not available in the navigation pane, then follow these steps:
	 a.	 Select All services at the top of the main left-hand navigation menu.
	 b.	 Type in Azure Active Directory in the filter search box and then select the	

	 Azure Active Directory item from the result.
5.	 In the Azure Active Directory pane, select Enterprise Applications from the

Azure Active Directory left-hand navigation menu.
6.	 Select All Applications to view a list of all your applications. If you do not

see the application you want, use the various filters at the top of the All
applications list to restrict the list or scroll down the list to locate your
application.

7.	 Select the application you want to assign a user or security group to from
the list.

8.	 In the application’s Overview page, select Properties from the application’s
left-hand navigation menu.

9.	 Locate the setting User assignment required? and set it to Yes. When this
option is set to Yes, then users must first be assigned to this application before
being able to access it.

10.	 Select Save to save this configuration change.

Restrict the cluster
access to assigned
users and assign
user access

33Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/

Assign users and groups to the app

Once you’ve configured your app to enable user assignment, you can go ahead and
assign users and groups to the app.

1.	 Select the Users and groups pane in the application’s left-hand
navigation menu.

2.	 At the top of the Users and groups list, select the Add user button to open the
Add Assignment pane.

3.	 Select the Users selector from the Add Assignment pane. A list of users and
security groups will be shown along with a textbox to search and locate a
certain user or group. This screen allows you to select multiple users and
groups in one go.

4.	 Once you are done selecting the users and groups, press the Select button on
bottom to move to the next part.

5.	 Press the Assign button on the bottom to finish the assignments of users and
groups to the app.

6.	 Confirm that the users and groups you added are showing up in the updated
Users and groups list.

34Getting Started with Azure Red Hat OpenShift

Register providers and features

The Microsoft.ContainerService AROGA feature, Microsoft.Solutions , Microsoft.
Compute , Microsoft.Storage , Microsoft.KeyVault, and Microsoft.Network providers
must be registered to your subscription manually before deploying your first Azure Red
Hat OpenShift cluster.

To register these providers and features manually, use the following instructions from
a Bash shell if you’ve installed the CLI, or from the Azure Cloud Shell (Bash) session in
your Azure portal:

1.	 If you have multiple Azure subscriptions, specify the relevant subscription ID:
	 az account set --subscription <SUBSCRIPTION ID>

2.	 Register the Microsoft.ContainerService AROGA feature:
	 az feature register --namespace Microsoft.ContainerService -n

	 AROGA

3.	 Register the Microsoft.Storage provider:
	 az provider register -n Microsoft.Storage --wait

4.	 Register the Microsoft.Compute provider:
	 az provider register -n Microsoft.Compute --wait

5.	 Register the Microsoft.Solutions provider:
	 az provider register -n Microsoft.Solutions --wait

6.	 Register the Microsoft.Network provider:
	 az provider register -n Microsoft.Network --wait

7.	 Register the Microsoft.KeyVault provider:
	 az provider register -n Microsoft.KeyVault --wait

8.	 Refresh the registration of the Microsoft.ContainerService resource provider:
	 az provider register -n Microsoft.ContainerService --wait

Create the cluster
and connect it to
your existing Virtual
Network

35Getting Started with Azure Red Hat OpenShift

Retrieve the peering Virtual Network details

If you don’t need to connect the virtual network (VNET) of the cluster you create to an
existing VNET via peering, skip this step.

If peering to a network outside the default subscription then in that subscription, you
will also need to register the provider Microsoft.ContainerService. To do this, run the
below command in that subscription. Else, if the VNET you are peering is located in the
same subscription, you can skip the registering step.

az provider register -n Microsoft.ContainerService --wait

First, get the identifier of the existing VNET. The identifier will be of the form:
/subscriptions/{subscription id}/resourceGroups/{resource group of
VNET}/providers/Microsoft.Network/virtualNetworks/{VNET name}.

If you don’t know the network name or the resource group the existing VNET belongs
to, go to the Virtual networks blade and click on your virtual network. The Virtual
network page appears and will list the name of the network and the resource group it
belongs to.

Retrieve the Virtual Network ID variable using the following CLI command in a Bash
shell. You’ll refer to its value as {peering vnet id}.

az network vnet show -n {VNET name} -g {VNET resource group} --query

id -o tsv

Create the resource group

Create the resource group for the cluster. Specify the resource group name and
location.

az group create --name {resource group name} --location {location}

36Getting Started with Azure Red Hat OpenShift

https://ms.portal.azure.com/#blade/HubsExtension/BrowseResourceBlade/resourceType/Microsoft.Network%2FvirtualNetworks

Create the cluster

You’re now ready to create a cluster. The following will create the cluster in the
specified Azure AD tenant, specify the Azure AD app object and secret to use as a
security principal, and the security group that contains the members that have admin
access to the cluster.

Make sure to replace the {app id}, {secret}, {tenant id}, {group id} and {peering vnet
id} with the values you made note of before.

az openshift create --resource-group {resource group name} --name

{cluster name} --location {location} --aad-client-app-id {app id}

--aad-client-app-secret {secret} --aad-tenant-id {tenant id}

--customer-admin-group-id {group id} --vnet-peer {peering vnet id}

After a few minutes, az openshift create will complete.

Update your app registration redirect URI

To be able to login to the cluster, you’ll need to update the app registration you created
in the Create an Azure Active Directory app registration for authentication step with
the sign in URL of your cluster. This will enable Azure Active Directory authentication to
properly redirect back to your cluster’s web console after successful authentication.

Get the sign in URL for your cluster

az openshift show -n {cluster name} -g {resource group name} --query

“publicHostname” -o tsv

You should get back something like openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.
The sign in URL for your cluster will be https:// followed by the publicHostName value.

For example: https://openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.
You will use this URI in the next step as part of the app registration redirect URI.
Now that you have the sign in URL for the cluster, set the app registration
redirect UI:

1.	 Open the App registrations blade.
2.	 Click on your app registration object.
3.	 Click on Add a redirect URI.
4.	 Ensure that TYPE is Web and set the REDIRECT URI using the following pattern:

https://<public host name>/oauth2callback/Azure%20AD.
For example:

	 https://openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io/oauth2callback/		
Azure%20AD

5.	 Click Save.

37Getting Started with Azure Red Hat OpenShift

https://portal.azure.com/#blade/Microsoft_AAD_IAM/ActiveDirectoryMenuBlade/RegisteredAppsPreview

From a Bash shell if you’ve installed the CLI, or from the Azure Cloud Shell (Bash)
session in your Azure portal, retrieve your cluster sign in URL by running:

az openshift show -n {cluster name} -g {resource group name} --query

“publicHostname” -o tsv

You should get back something like openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.
The sign in URL for your cluster will be https:// followed by the publicHostName value.
For example: https://openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io.

Open this URL in your browser, you’ll be asked to login with Azure Active Directory. Use
the username and password for the user you created.

After logging in, you should be able to see the Azure Red Hat OpenShift Web Console.

Via the Web UI

38Getting Started with Azure Red Hat OpenShift

ACCESSING THE
CLUSTER

Downloading the OpenShift CLI

You’ll need to download the latest OpenShift CLI (oc) client tools release for OpenShift
3.11.

From a Bash shell if you’ve installed the CLI, or from the Azure Cloud Shell (Bash)
session in your Azure portal, download the latest release, extract it into the openshift
directory, then make it available on your PATH.

wget

https://github.com/openshift/origin/releases/download/v3.11.0/openshif

t-origin-client-tools-v3.11.0-0cbc58b-linux-64bit.tar.gz

mkdir openshift

tar -zxvf

openshift-origin-client-tools-v3.11.0-0cbc58b-linux-64bit.tar.gz -C

openshift --strip-components=1

echo ‘export PATH=$PATH:~/openshift’ >> ~/.bashrc && source ~/.bashrc

Running the OpenShift CLI and logging into your cluster

To authenticate against your cluster, you’ll need to retrieve the login command
and token from the Web Console. Once you’re logged into the Web Console, click
on the username on the top right, then click Copy login command, which will look
something like oc login https://openshift.xxxxxxxxxxxxxxxxxxxx.eastus.azmosa.io
--token=[authentication token]

Via OpenShift CLI
(oc)

From a Bash shell if you’ve installed the CLI, or from the Azure Cloud Shell (Bash)
session in your Azure portal, paste that login command and you should be able to
connect to your cluster.

39Getting Started with Azure Red Hat OpenShift

https://github.com/openshift/origin/releases/tag/v3.11.0

In this chapter, you will be deploying a ratings application on Azure Red Hat OpenShift.
The application consists of a frontend container and an API container, both written in
NodeJS. The API reads/writes data to a MongoDB.

You can find the application source code in the links below.

Component	 Link
A public facing API rating-api	 GitHub repo
A public facing web frontend rating-web	 GitHub repo

GET /healthz

Application
Overview

NODE JS
ratings-web

NODE JS
ratings-api

MONGODB
mongoDB

40Getting Started with Azure Red Hat OpenShift

CREATING A MULTI-CONTAINER
RATINGS APPLICATION

https://github.com/microsoft/rating-api
https://github.com/microsoft/rating-web

Connect and authenticate against the cluster

Follow the steps in accessing the cluster section to download the OpenShift CLI and
authenticate against the cluster.

Create the project

A project allows a community of users to organize and manage their content in
isolation from other communities.

oc new-project workshop

Azure Red Hat OpenShift provides a container image and template to make creating a
new MongoDB database service easy. The template provides parameter fields to define
all the mandatory environment variables (user, password, database name, etc) with
predefined defaults including auto-generation of password values. It will also define
both a deployment configuration and a service.

Create MongoDB from template

There are two templates available:
•	 mongodb-ephemeral is for development/testing purposes only because

it uses ephemeral storage for the database content. This means that if the
database pod is restarted for any reason, such as the pod being moved to
another node or the deployment configuration being updated and triggering
a redeploy, all data will be lost.

•	 mongodb-persistent uses a persistent volume store for the database data
which means the data will survive a pod restart. Using persistent volumes
requires a persistent volume pool be defined in the Azure Red Hat OpenShift
deployment.

You can retrieve a list of templates using the command below. The templates are
preinstalled in the openshift namespace.

oc get templates -n openshift

Connect to the
cluster and create
a project

Deploy MongoDB

41Getting Started with Azure Red Hat OpenShift

Create a MongoDB deployment using the mongodb-persistent template. You’re
passing in the values to be replaced (username, password and database) which
generates a YAML/JSON file. You then pipe it to the oc create command.

oc process openshift//mongodb-persistent \

	 -p MONGODB_USER=ratingsuser \

	 -p MONGODB_PASSWORD=ratingspassword \

	 -p MONGODB_DATABASE=ratingsdb \

	 -p MONGODB_ADMIN_PASSWORD=ratingspassword | oc create -f -

If you now head back to the web console, you should see a new deployment for
MongoDB.

Verify the MongoDB pod was created successfully

Run the oc status command to view the status of the new application and verify if the
deployment of the mongoDB template was successful.

oc status

42Getting Started with Azure Red Hat OpenShift

Retrieve the MongoDB service hostname

The service will be accessible at the following hostname: mongodb.workshop.svc.
cluster.local which is formed of [service name].[project name].svc.cluster.local.
This resolves only within the cluster.

You can also retrieve this from the web console. You’ll need this hostname to configure
the rating-api.

The rating-api is a NodeJS application that connects to m\MongoDB to retrieve and
rate items. Below are some of the details that you’ll need to deploy this.

•	 rating-api on GitHub: https://github.com/microsoft/rating-api
•	 The container exposes port 8080
•	 MongoDB connection is configured using an environment variable called

MONGODB_URI

Use the OpenShift CLI to deploy the rating-api

Note that to be able to setup CI/CD webhooks, you’ll need to fork the application into
your personal GitHub repository first. After that, you’re going to be using source-to-
image (S2I) as a build strategy.

Create a new application in the project by pointing to your GitHub fork of the rating-
api app.

oc new-app https://github.com/<your GitHub username>/rating-api

--strategy=source

Deploy the
ratings-api
service

43Getting Started with Azure Red Hat OpenShift

https://github.com/microsoft/rating-api

OpenShift should now pull the source code, detect that this is a NodeJS application
then use S2I to build a container image and push it to the built-in container registry.
OpenShift is also going to deploy the application using a deployment config and
create a service.

Configure the required environment variables

The rating-api application expects to find the MongoDB connection information
in an environment variable called MONGODB_URI. This URI should look like
mongodb://[username]:[password]@[endpoint]:27017/ratingsdb. You’ll need to replace
the [username] and [password] with the ones you used when creating the database.
You’ll also need to replace the [endpoint] with the hostname acquired in the previous
section.

You can accomplish this task using the OpenShift CLI or using the Web Console, for
this one you’ll edit the deployment configuration for the rating-api application on
the Web Console to add the environment variable. Make sure to hit Save when done.

44Getting Started with Azure Red Hat OpenShift

The rating-web is a NodeJS application that connects to the rating-api. Below are some
of the details that you’ll need to deploy this.

•	 rating-web on GitHub
•	 The container exposes port 8080
•	 The web app connects to the API over the internal cluster DNS, using a proxy

through an environment variable named API

Notice the fully qualified domain name (FQDN) is comprised of the application name
and project name by default. The remainder of the FQDN, the subdomain, is your
Azure Red Hat OpenShift cluster specific apps subdomain.

Expose the service.

	 oc expose svc/rating-web

Find out the created route hostname

	 oc get route rating-web

You should get a response similar to the below.

Deploy the
ratings-web
frontend using
S2I strategy

Create a route for
the ratings-web
frontend

45Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#ratingsweb
http://aroworkshop.io/#expose-the-rating-web-service-using-a-route

You can scale the number of application nodes in the cluster using the Azure CLI.
Run the below on the Azure Cloud Shell to scale your cluster to 5 application nodes.
Replace <cluster name> and <resource group name> with your applicable values.
After a few minutes, az openshift scale will complete successfully and return a JSON
document containing the scaled cluster details.

az openshift scale --name <cluster name> --resource-group <resource

	 group name> --compute-count 5

After the cluster has scaled successfully. You can run the following command to verify
the number of application nodes.

az openshift show --name <cluster name> --resource-group <resource

	 group name> --query “agentPoolProfiles”[0]

Following is a sample output. You can notice that the value of count for
agentPoolProfiles has been scaled to 5.

{

	 “count”: 5,

	 “name”: “compute”,

	 “osType”: “Linux”,

	 “role”: “compute”,

	 “subnetCidr”: “10.0.0.0/24”,

	 “vmSize”: “Standard_D4s_v3”

}

Scaling the
application and
the cluster

46Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#scaling

Now that you have the application working, it is time to apply some security hardening.
You’ll use network policies to restrict communication to the rating-api.

Switch to the Cluster Console

Switch to the Cluster Console page. Switch to project workshop. Click Create
Network Policy.

Create Network Policy

You will create a policy that applies to any pod matching the app=rating-api label.
The policy will allow ingress only from pods matching the app=rating-web label.

Use the YAML below in the editor, and make sure you’re targeting the workshop
project.

Controlling
networking using
networking
policies

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
	 name: api-allow-from-web
	 namespace: workshop
spec:
	 podSelector:
		 matchLabels:
			 app: rating-api
	 ingress:
		 - from:
			 - podSelector:
				 matchLabels:
					 app: rating-web

47Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#networkpolicy

Click Create.

48Getting Started with Azure Red Hat OpenShift

OSToy is a simple Node.js application that we will deploy to Azure Red Hat OpenShift.
It is used to help us explore the functionality of Kubernetes. This application has a user
interface which you can:

•	 write messages to the log (stdout / stderr)
•	 intentionally crash the application to view self-healing
•	 toggle a liveness probe and monitor OpenShift behavior
•	 read config maps, secrets, and env variables
•	 if connected to shared storage, read and write files
•	 check network connectivity, intra-cluster DNS, and intra-communication

with an included microservice

Application
Overview

ostoy-microservice-svcostoy-frontend-svc

Persistent
Volume
Claim

PERSISTENT
VOLUME

OpenShift Project
configmap

OSTOY-MICROSERVICEOSTOY-FRONTENDROUTE

secret

49Getting Started with Azure Red Hat OpenShift

USING AN APP TO BECOME
FAMILIAR WITH OPENSHIFT
AND KUBERNETES

http://aroworkshop.io/#lab2-appoverview

Retrieve login command

If not logged in via the CLI, click on the dropdown arrow next to your name in the top-
right and select Copy Login Command.

Then go to your terminal and paste that command and press enter. You will see a
similar confirmation message if you successfully logged in.

$ oc login https://openshift.abcd1234.eastus.azmosa.io

	 --token=hUXXXXXX

Logged into “https://openshift.abcd1234.eastus.azmosa.io:443” as

	 “okashi” using the token provided.

You have access to the following projects and can switch between them with ‘oc
project <projectname>’:

	 aro-demo

*	 aro-shifty

	 ...

Create new project

Create a new project called “OSToy” in your cluster.

Use the following command

	 oc new-project ostoy

You should receive the following response:

	 $ oc new-project ostoy

	 Now using project “ostoy” on server

	 “https://openshift.abcd1234.eastus.azmosa.io:443”.

Deploy the OSToy
application

50Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-app-deployment

You can add applications to this project with the ‘new-app’ command. For example, try:

	 oc new-app

	 centos/ruby-25-centos7~https://github.com/sclorg/ruby-ex.git

to build a new example application in Ruby.

You can also create this new project using the web UI by selecting “Application
Console” at the top and then clicking the “+Create Project” button on the right.

Download YAML configuration

Download the Kubernetes deployment object yamls from the following locations to
your Azure Cloud Shell, in a directory of your choosing (just remember where you
placed them for the next step).

Feel free to open them up and take a look at what we will be deploying. For simplicity
of this lab we have placed all the Kubernetes objects we are deploying in one “all-
in-one” yaml file. Though in reality there are benefits to separating these out into
individual yaml files.

ostoy-fe-deployment.yaml
ostoy-microservice-deployment.yaml

Deploy backend microservice

The microservice application serves internal web requests and returns a JSON object
containing the current hostname and a randomly generated color string.

In your command line, deploy the microservice using the following command:

	 oc apply -f ostoy-microservice-deployment.yaml

You should see the following response:

$ oc apply -f ostoy-microservice-deployment.yaml

deployment.apps/ostoy-microservice created

service/ostoy-microservice-svc created

51Getting Started with Azure Red Hat OpenShift

Deploy the front-end service

The frontend deployment contains the node.js frontend for our application along with
a few other Kubernetes objects to illustrate examples.

If you open the ostoy-fe-deployment.yaml you will see we are defining:
•	 Persistent Volume Claim
•	 Deployment Object
•	 Service
•	 Route
•	 Configmaps
•	 Secrets

In your command line deploy the frontend along with creating all objects mentioned
above by entering:

	 oc apply -f ostoy-fe-deployment.yaml

You should see all objects created successfully

$ oc apply -f ostoy-fe-deployment.yaml

persistentvolumeclaim/ostoy-pvc created

deployment.apps/ostoy-frontend created

service/ostoy-frontend-svc created

route.route.openshift.io/ostoy-route created

configmap/ostoy-configmap-env created

secret/ostoy-secret-env created

configmap/ostoy-configmap-files created

secret/ostoy-secret created

52Getting Started with Azure Red Hat OpenShift

Get route

Get the route so that we can access the application via oc get route

You should see the following response:

Copy ostoy-route-ostoy.apps.abcd1234.eastus.azmosa.io above and paste it into your
browser and press enter. You should see the homepage of our application.

NAME	 HOST/PORT	 PATH	 SERVICES	 PORT	 TERMINATION	 WILDCARD
ostoy-route	 ostoy-route-ostoy.apps.abcd1234.eastus.azmosa.is	 ostoy-frontend-svc	 <all>		 None

53Getting Started with Azure Red Hat OpenShift

Assuming you can access the application via the Route provided and are still logged
into the CLI (please go back to part 2 if you need to do any of those), we’ll start to use
this application. As stated earlier, this application will allow you to “push the buttons”
of OpenShift and see how it works.

Click on the Home menu item and then click in the message box for “Log Message
(stdout)” and write any message you want to output to the stdout stream. You can try
“All is well!”. Then click “Send Message”.

Click in the message box for “Log Message (stderr)” and write any message you
want to output to the stderr stream. You can try “Oh no! Error!”. Then click
“Send Message”.

Go to the CLI and enter the following command to retrieve the name of your frontend
pod which we will use to view the pod logs:

$ oc get pods -o name

pod/ostoy-frontend-679cb85695-5cn7x

pod/ostoy-microservice-86b4c6f559-p594d

So the pod name in this case is ostoy-frontend-679cb85695-5cn7x. Then run oc logs
ostoy-frontend-679cb85695-5cn7x and you should see your messages:

$ oc logs ostoy-frontend-679cb85695-5cn7x

[...]

ostoy-frontend-679cb85695-5cn7x: server starting on port 8080

Redirecting to /home

stdout: All is well!

stderr: Oh no! Error!

You should see both the stdout and stderr messages.

Explore Logging

54Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-logging

It would be best to prepare by splitting your screen between the OpenShift Web UI
and the OSToy application so that you can see the results of our actions immediately.

If your screen is too small or that just won’t work, then open the OSToy application in
another tab so you can quickly switch to the OpenShift Web Console once you click
the button. To get to this deployment in the OpenShift Web Console go to:

Applications > Deployments > click the number in the “Last Version” column for the
“ostoy-frontend” row

Health Checks

55Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-heathcheck

Go to the OSToy app, click on Home in the left menu, and enter a message in the
“Crash Pod” tile (ie: “This is goodbye!”) and press the “Crash Pod” button. This will
cause the pod to crash and Kubernetes should restart the pod. After you press the
button you will see:

Quickly switch to the Deployment screen. You will see that the pod is red, meaning it
is down but should quickly come back up and show blue.

You can also check in the pod events and further verify that the container has crashed
and been restarted.

56Getting Started with Azure Red Hat OpenShift

Keep the page from the pod events still open from step 4. Then in the OSToy app
click on the “Toggle Health” button, in the “Toggle Health Status” tile. You will see the
“Current Health” switch to “I’m not feeling all that well”.

This will cause the app to stop responding with a “200 HTTP code”. After 3 such
consecutive failures (“A”), Kubernetes will kill the pod (“B”) and restart it (“C”). Quickly
switch back to the pod events tab and you will see that the liveness probe failed and
the pod as being restarted.

57Getting Started with Azure Red Hat OpenShift

Inside the OpenShift web UI click on Storage in the left menu. You will then see a list
of all persistent volume claims that our application has made. In this case there is just
one called “ostoy-pvc”. You will also see other pertinent information such as whether
it is bound or not, size, access mode and age.

In this case the mode is RWO (Read-Write-Once) which means that the volume can
only be mounted to one node, but the pod(s) can both read and write to that volume.
The default in Azure Red Hat OpenShift is for Persistent Volumes to be backed by
Azure Disk, but it is possible to chose Azure Files so that you can use the RWX (Read-
Write-Many) access mode. (See here for more info on access modes)

In the OSToy app click on Persistent Storage in the left menu. In the “Filename” area
enter a filename for the file you will create. (ie: “test-pv.txt”)

Underneath that, in the “File Contents” box, enter text to be stored in the file. (ie:
“Azure Red Hat OpenShift is the greatest thing since sliced bread!” or “test” :)).
Then click “Create file”.

You will then see the file you created appear above under “Existing files”. Click on the
file and you will see the filename and the contents you entered.

Persistent Storage

58Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/aro/architecture/additional_concepts/storage.html#pv-access-modes
http://aroworkshop.io/#lab2-storage

We now want to kill the pod and ensure that the new pod that spins up will be able
to see the file we created. Exactly like we did in the previous section. Click on Home
in the left menu.

Click on the “Crash pod” button. (You can enter a message if you’d like).

Click on Persistent Storage in the left menu

You will see the file you created is still there and you can open it to view its contents
to confirm.

Now let’s confirm that it’s actually there by using the CLI and checking if it is
available to the container. If you remember, we mounted the directory /var/demo-
files to our PVC. So get the name of your frontend pod

	 oc get pods

then get an SSH session into the container

	 oc rsh <podname>

then

	 cd /var/demo-files

if you enter ls you can see all the files you created. Next, let’s open the file we
created and see the contents

	 cat test-pv.txt

59Getting Started with Azure Red Hat OpenShift

You should see the text you entered in the UI.

$ oc get pods

NAME	 READY	 STATUS	 RESTARTS	 AGE

ostoy-frontend-5fc8d486dc-wsw24	 1/1	 Running	 0	 18m

ostoy-microservice-6cf764974f-hx4qm	 1/1	 Running	 0	 18m

$ oc rsh ostoy-frontend-5fc8d486dc-wsw24

/ $ cd /var/demo_files/

/var/demo_files $ ls

lost+found test-pv.txt

/var/demo_files $ cat test-pv.txt

Azure Red Hat OpenShift is the greatest thing since sliced bread!

Then exit the SSH session by typing exit. You will then be in your CLI.

60Getting Started with Azure Red Hat OpenShift

In this section we’ll take a look at how OSToy can be configured using ConfigMaps,
Secrets, and Environment Variables. This section won’t go into details explaining
each (the links above are for that), but will show you how they are exposed to the
application.

Configuration using ConfigMaps

ConfigMaps allow you to decouple configuration artifacts from container image
content to keep containerized applications portable.

Click on Config Maps in the left menu.

This will display the contents of the configmap available to the OSToy application.
We defined this in the ostoy-fe-deployment.yaml here:

Configuration -
ConfigMaps,
Secrets,
Environment
Variables

kind: ConfigMap
apiVersion: v1
metadata:
	 name: ostoy-configmap-files
data:
	 config.json: ‘{ “default”: “123” }’

61Getting Started with Azure Red Hat OpenShift

https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html
https://docs.openshift.com/container-platform/3.11/dev_guide/secrets.html
https://docs.openshift.com/container-platform/3.11/dev_guide/environment_variables.html

In this section we’ll see how OSToy uses intra-cluster networking to separate functions
by using microservices and visualize the scaling of pods.

Let’s review how this application is set up…

As can be seen in the image above, we have defined at least 2 separate pods, each
with its own service. One is the frontend web application (with a service and a publicly
accessible route) and the other is the backend microservice with a service object
created so that the frontend pod can communicate with the microservice (across the
pods if more than one). Therefore this microservice is not accessible from outside
this cluster, nor from other namespaces/projects (due to Azure Red Hat OpenShift’s
network policy, ovs-networkpolicy). The sole purpose of this microservice is to serve
internal web requests and return a JSON object containing the current hostname and
a randomly generated color string. This color string is used to display a box with that
color displayed in the tile (titled “Intra-cluster Communication”).

Networking and
Scaling

62Getting Started with Azure Red Hat OpenShift

http://aroworkshop.io/#lab2-network

Networking

Click on Networking in the left menu. Review the networking configuration.

The right tile titled “Hostname Lookup” illustrates how the service name created for a
pod can be used to translate into an internal ClusterIP address. Enter the name of the
microservice following the format of my-svc.my-namespace.svc.cluster.local which we
created in our ostoy-microservice.yaml which can be seen here:

In this case we will enter: ostoy-microservice-svc.ostoy.svc.cluster.local
We will see an IP address returned. In our example it is 172.30.165.246. This is the
intra-cluster IP address; only accessible from within the cluster.

Scaling

OpenShift allows one to scale up/down the number of pods for each part of an
application as needed. This can be accomplished via changing our replicaset/
deployment definition (declarative), by the command line (imperative), or via the web
UI (imperative). In our deployment definition (part of our ostoy-fe-deployment.yaml)
we stated that we only want one pod for our microservice to start with. This means
that the Kubernetes Replication Controller will always strive to keep one pod alive.

apiVersion: v1
kind: Service
metadata:
	 name: ostoy-microservice-svc
	 labels:
		 app: ostoy-microservice
spec:
	 type: ClusterIP
	 ports:
		 -	port: 8080
			 targetPort: 8080
			 protocol: TCP
	 selector:
		 app: ostoy-microservice

63Getting Started with Azure Red Hat OpenShift

When your development and operations teams spend most of their working hours
dealing with provisioning, setup, maintenance, and overseeing your clusters and CI/CD
pipeline, they’re not able to dedicate their valuable time towards what they are best at
– keeping your apps at the cutting edge.

As we have learned from this guide, Azure Red Hat OpenShift lets you deploy fully
managed Red Hat OpenShift clusters without worrying about building or managing
the infrastructure required to run it. We’ve seen that running Kubernetes alone comes
with a few caveats, mainly in relation with the extra hands-on attention required with
tasks that could be automated with Azure Red Hat OpenShift.

When you’re deciding which cluster management strategy to choose for your
organization, consider the pros and cons that you’ll be getting with a Kubernetes
type of platform versus Azure Red Hat OpenShift, which is built on the Kubernetes
framework and offers you a bundle of extra out-of-the-box benefits.

To learn more about your Azure Red Hat OpenShift, visit the product page or check
out our documentation section. You can also go through a hands-on workshop, and
register to watch a webinar at your convenience.

Running Kubernetes
alone may still allow
you to achieve the
level of cluster
management you
are looking for,
but it comes with
a price.

64Getting Started with Azure Red Hat OpenShift

CONCLUSION

https://azure.microsoft.com/en-us/services/openshift/
https://docs.microsoft.com/en-us/azure/openshift/intro-openshift
https://aroworkshop.io/

	Preface
	Who this book
is for
	What this book
covers

	WHAT CAN AZURE
DO FOR YOU?
	INTRODUCTION TO RED HAT OPENSHIFT
	Red Hat OpenShift
Overview
	Business Value
	What do you get with OpenShift as opposed to Kubernetes?
	Concepts of
OpenShift

	AZURE RED HAT
OPENSHIFT
	Architecture
	Management
	Security
	Support

	SETTING UP THE CLUSTER,
	NETWORKING AND SECURITY
	Install the Azure CLI and sign in to Azure
	Create an Azure Active Directory tenant for your cluster
	Create the administrator user and administrator security group
	Create an Azure Active Directory app registration for
	authentication
	Restrict the cluster access to assigned users and assign
user access
	Create the cluster and connect it to your existing Virtual
	Network

	Accessing the
cluster
	Via the Web UI
	Via OpenShift CLI

	Creating a multi-container ratings application
	Application
Overview
	Connect to the cluster and create a project
	Deploy MongoDB
	Deploy the ratings-api
service
	Deploy the ratings-web frontend using
S2I strategy
	Create a route for the ratings-web frontend
	Scaling the application and the cluster
	Controlling networking using networking policies

	Using an app to become
familiar with OpenShift
and Kubernetes
	Application
Overview
	Deploy the OSToy application
	Explore Logging
	Health Checks
	Persistent Storage
	Configuration - ConfigMaps,
Secrets,
Environment
Variables
	Networking and Scaling

	Conclusion

