

SQL Server Big Data Clusters Security
Best Practices for Deployments on
Red Hat OpenShift
Technical whitepaper

Published: June 2020
Applies to: Microsoft SQL Server 2019 CU5

For the latest deployment information, see:
https://aka.ms/sql-bdc-openshift-docs

SQL Server Big Data Cluster-Security Best Practices for Deployments on Red Hat OpenShift

Contents

Introduction .. 1

CAP_SETUID and CAP_SETGID Capabilities ... 2
CAP_SETUID and CAP_SETGID Use Cases .. 2
Programs Granted CAP_SETUID/CAP_SETGID ... 3

CAP_CHOWN Capability .. 3
CAP_CHOWN Use Cases ... 3
Programs Granted CAP_CHOWN .. 4

CAP_SYS_PTRACE Capability .. 4
CAP_SYS_PTRACE Use Cases ... 4
Programs Granted CAP_SYS_PTRACE .. 4

Security impact of enabling capabilities ... 5

Conclusion ... 6

Additional resources ... 6

Acknowledgements ... 6

Appendix 1 – Custom BDC SCC .. 7

1

Introduction
Microsoft SQL Server Big Data Clusters (BDC) is a new feature introduced with the SQL Server 2019 release
that enables a new deployment pattern for SQL Server by adding Apache Hadoop Distributed File System
(HDFS) and Apache Spark for big data storage and analytics. BDC runs as a set of purpose-built Linux
container images on Kubernetes. Container software allows packaging and isolation of application/database
services with their dependencies, making it easy to build & deploy them anywhere. Kubernetes is the open
source container orchestration framework that automates deployment and lifecycle management of
containers at scale With BDC you can run analytical workloads at any scale, on an integrated container
platform, designed to derive intelligent insights from structured and unstructured data sources.

The Red Hat OpenShift platform is the industry leading Kubernetes based container platform that provides
self-service seamless experience for software developers, data scientists, data analysts, database
administrators, etc. to help accelerate development and delivery of intelligent applications. OpenShift is the
supported reference platform for running SQL Server in containers.

As part of a strategic partnership between the two companies, Red Hat and SQL Server engineers worked
together closely to enable support for BDC on OpenShift starting with SQL Server 2019 CU5 release. With
BDC on OpenShift, enterprise customers can deploy fully supported data analytics on a container and
Kubernetes stack that follows best practices and guidance unique to the OpenShift environment. This allows
organizations to achieve the desired scalability, flexibility, security, and portability associated with containers
and Kubernetes in the cloud-native era.

As a general best practice, an optimal security design is one in which you have multiple layers of protection
(called “defense in depth”). One layer of protection can be to run with as few Linux capabilities as possible.
A second is to not run the PID1 process in the container as root. A third layer of protection is to use SELinux
on the host to prevent the root user from performing any changes to the host file system or to other
processes/users.

The deployment model for BDC has been enhanced to allow you to follow this guidance, so that privileged
containers, deployed as part of BDC, are no longer required. In addition, BDC containers now run as a non-
root user by default. For BDC there are cases where elevation of privileges is necessary to improve process
isolation within specific containers. For example, there are processes running within BDC containers like SQL
Server or Yarn that run user provided code. To better isolate that user provided code, and make sure it
cannot access other user's provided code or data - a separate process is spun off for each execution of that
user provided code. This creates a level of isolation where each process runs as its own different user ID and
therefore can only access data within the respective process. More, it cannot access data outside of the
process boundaries, including other processes or domain system process. To provide this level of security
isolation, specific system services within BDC will require to temporarily elevated privileges so they can
launch these processes under their own UID.

This document explains what additional permissions are necessary and why BDC requires certain security
policies. In addition to the use cases, this document will specify which containers and applications require
these elevated capabilities.

2

CAP_SETUID and CAP_SETGID Capabilities
Some system services running inside BDC containers require the use of the CAP_SETUID and CAP_SETGID
capabilities to launch processes under their own low-privileged UID. The use of multiple UIDs within BDC
containers increases security by reducing the possibility that code executed under one user account can
affect another user or the system. Using multiple UIDs also reduces the possibility that a vulnerability in a
container service will allow sensitive container information to be accessed (e.g. Active Directory credentials).
The system services that are granted the CAP_SETUID and CAP_SETGID capabilities run under a low-
privileged UID under normal operation. The CAP_SETUID and CAP_SETGID capabilities are only used while
executing the operations specified below.

Note that while a process could theoretically be changed to run as root on a host, SELinux prevents taking
read/write actions on the host. SELinux is enabled by default in OpenShift.

CAP_SETUID and CAP_SETGID Use Cases
The CAP_SETUID and CAP_SETGID capabilities are used by BDC in the following use cases:

Launching services that host user code
Multiple BDC services provide facilities to launch and execute user-provided code. This user-provided code
runs in the same container as its launching service. In order to protect the launching service process, as well
as other system and user-provided processes, from malicious user-provided code, the CAP_SETUID and
CAP_SETGID capabilities are used to instruct OpenShift to launch processes executing user code under their
own unique low-privileged UID. The services that can launch programs to execute user code are: YARN
(running Spark or MapReduce jobs) and SQL Server Extensibility (R, Python, and Java jobs typically used for
Machine Learning model training or inferencing). If SQL Server Extensibility is not needed, it can be disabled.

Container Agent
Each BDC container has an agent that is responsible for monitoring and managing that container. The
container agent is responsible for joining the container to Active Directory (optional), performing health
checks, and delivering configuration/data files securely. The container agent uses the CAP_SETUID and
CAP_SETGIDID privileges in two situations:

● to start the service management program (supervisor) under a low-privileged UID
● to install the cluster root certificate authority certificate within the container

Service Management
Each BDC container has a supervisor program which is responsible for launching application services (e.g.
SQL Server, YARN NodeManager). To protect application services from one another, and to prevent those
services from accessing sensitive files, each service is launched under its own unique low-privileged UID.
Because the supervisor program itself is complex, we use a service launcher program to launch services. The
service launcher has been granted CAP_SETUID and CAP_SETGID capabilities and can only be used to start a
fixed set of services specified in a configuration file. This configuration file is built into the product and
cannot be changed by any user other than root.

Among the processes that the service launcher is starting is the setup step that executed when the user
creates a new app through application deployment feature. User can opt in to install additional packages to

3

be used by the application and this will require root permissions. Execution of this step as root does not have
any system wide impact and it is confined to the application only. User code deployed as part of the
application will run as low privilege user.

Programs Granted CAP_SETUID/CAP_SETGID
Only a limited set of programs are granted CAP_SETUID and CAP_SETGID capabilities. These programs only
utilize these capabilities in the circumstances described above.

Program Default UID Use Case

Yarn NodeManager yarn Launching services that host user code

SQL Server Launchpad mssql Launching services that host user code

Container agent agent Container Agent

Service Launcher supervisor Service Management

CAP_CHOWN Capability
The container agent in BDC is responsible for configuring service and security settings within a container
during startup. The agent needs to write to files owned by different UIDs and to set ownership on newly
created files and directories. Even though the process can be elevated to root on the host, changes to the
host file system are blocked by SELinux.

CAP_CHOWN Use Cases
The CAP_CHOWN capability is used by the container agent in the following use cases:

Writing to /etc/hosts and /etc/resolv.conf
The container agent writes information into the /etc/hosts and /etc/resolv.conf files to configure name
resolution to work properly in an Active Directory environment when Active Directory integration is used. We
only modify the hosts and resolv.conf within the container file system and this change only affects DNS
resolution from inside of the container. In addition, SELinux blocks changes to files at the host level. We are
looking at another option for longer term to eliminate the need for CAP_CHOWN/editing these name
resolution files.

Configuring file system permissions for files and services
The container agent needs to set permissions under the following use cases:

● Set permissions on directories owned and managed by services so that the service process can
access them at startup. For example: /var/opt/mssql is set to be owned by the ‘mssql’ user which is
the user of the SQL Server service process.

● Set permissions on log directories such as /var/log/mssql so that the log directory can be shared
between the SQL Server service process and the FluentBit service process in the logging sidecar
container.

4

● Set permissions on configuration and security files belonging to a particular service. For example:
the SSL certificates and service keytabs for HDFS datanode are configured to be readable only by
the ‘hdfs’ user.

Programs Granted CAP_CHOWN
Only a limited set of programs are granted the ability to use the CAP_CHOWN capabilities. These programs
only use these capabilities in the circumstances described above.

Program Default UID Use Case

Container agent agent Writing to /etc/hosts and /etc/resolv.conf
Configuring file system permissions for files and services

CAP_SYS_PTRACE Capability
The CAP_SYS_PTRACE capability is an optional capability that can be enabled by a customer to allow the SQL
Server BDC cluster controller and SQL Server to save crash dumps to disk when a program crash occurs. It is
recommended to run with the CAP_SYS_PTRACE capability enabled so that dumps can be captured if there is
a crash and the provided to Microsoft Support for troubleshooting.

The only way to exploit this would be to connect back to the process that has CAP_SYS_PTRACE, but we are
not pass CAP_SYS_PTRACE to the user code process.

CAP_SYS_PTRACE Use Cases
The SQL Server BDC cluster controller and SQL Server use the CAP_SYS_PTRACE capability under the
following use cases:

Taking a crash dump of a failed process
When a critical error or memory corruption occurs in either the BDC controller a SQL Server process, an
external process called sqldumper is used to take a crash dump of the affected process. This process collects
the memory and other debugging information about the situation so that Microsoft support engineers can
help customers resolve product issues.

Programs Granted CAP_SYS_PTRACE
Only a limited set of programs are granted the ability to use the CAP_SYS_TRACE capabilities. These
programs only use these capabilities in the circumstances described above.

Program Default UID Use Case

sqldumper mssql, controller Taking a crash dump of a failed process

5

Security impact of enabling capabilities
The CAP_SETUID, CAP_SETGID, and CAP_CHOWN capabilities are enabled to provide a secure environment
within each container. They are used to prevent services from interfering with each other or interfering with
system programs such as the container agent. They are also used to protect services from user code
executing in the container. These capabilities are only granted to control programs which are responsible for
managing cluster provided services (e.g. SQL Server Extensibility or YARN NodeManager) or managing the
container itself. Programs that are not granted these capabilities cannot use them. There are three places in
the product where user-provided code can be executed:

● Machine Learning Services in SQL Server – This enables executing R, Python, and Java scripts in the
context of a T-SQL query typically for the purposes of training a machine learning model or to score
data against a model. ML Services can be easily ￼enabled or disabled (default) in BDC.
Additionally, even when the feature is enabled, concurrent sessions and external scripts execution
are restricted to one unique login at a time to guarantee complete user isolation.

● Spark jobs – You can control what users have access to launch Spark jobs in BDC by creating an AD

group which has no users in it and assign that group to the clusterUsers deployment configuration
at deployment time. Only users in this group and the AD group associated with the clusterAdmins
deployment configuration setting can execute Spark jobs. See the Active Directory integration
article for more information.

● Applications deployed using the app deploy interfaces – This optional feature enables deployment
of R, Python, SSIS and MLeap applications on BDC by providing interfaces to create, manage, and
run applications. Only the setup step of the application requires running as a high privileged user
since it installed additional packages that the application will use. Other user code deployed as part
of the application will run as low privilege user.

The CAP_SYS_PTRACE capability is necessary to allow crash dumps to be taken of the SQL Server BDC
controller and SQL Server when they crash. When a crash occurs, a process called sqldumper attaches to the
crashing process so that it can save the memory of the process to disk. Only the sqldumper process is
granted the CAP_SYS_PTRACE capability and can do this. CAP_SYS_PTRACE is optional but disabling it will
prevent dumps from being captured for troubleshooting purposes.

The capabilities assigned do not grant any permissions to resources or facilities outside of the container.
Barring unknown defects in Kubernetes or the Linux kernel, it should not be possible to escape a container
or cause issues on a host by assigning these capabilities. SQL Server BDC undergoes extensive security
testing during each release to make sure that everything running in a container is secure. Checking for weak
permissions and ways to elevate privileges are two of the many criteria validated.

In OpenShift, the actions that containers within a pod can perform and what are they able to access are
controlled using security context constraints (SCCs). OCP provides a set of predefined SCCs that can be used
as is, modified or extended by any administrator. As a best practice, you should not modify the built-in SCCs
to add the necessary capabilities for BDC. Creating a custom SCC to be used for the BDC project will ensure
that other resources running within other project/namespaces in the same OpenShift cluster are not

6

impacted. Appendix 1 includes a sample custom SCC that specifies the additional capabilities required for
BDC to deploy successfully.

Conclusion
To summarize, BDC is a new feature introduced with the SQL Server 2019 release that enables a
new deployment pattern for SQL Server by adding Apache Hadoop Distributed File System (HDFS) and
Apache Spark for big data storage and analytics. BDC runs as a set of purpose-built Linux container images
on Kubernetes. Red Hat OpenShift is the industry leading Kubernetes based container platform that provides
self-service seamless experience for software developers, data scientists, data analysts, database
administrators, etc. to help accelerate development and delivery of intelligent applications. With BDC on
OpenShift, enterprise customers can deploy fully supported data analytics on containers and Kubernetes
stack.

The deployment model for BDC has been enhanced to allow you to follow this guidance, so that privileged
containers, deployed as part of BDC, are no longer required. In addition, BDC containers now run as a non-
root user by default. For BDC there are cases where elevation of privileges is necessary to improve process
isolation within specific containers. This document explained the additional permissions that are necessary
and why BDC requires certain security policies. In addition to the use cases, this document specified which
containers and applications require these capabilities.

As next steps, please see below for additional resources to learn more about how to deploy SQL Server Big
Data Clusters on OpenShift and start running your analytics workloads on this comprehensive and secure
platform.

Additional resources
● Learn more about SQL Server Big Data Clusters
● Learn more about containers and OpenShift security best practices: OpenShift Protects Against Nasty

Container Exploit / Ten Layers of Container Security / Container Hosts and Multi-tenancy / Managing
Security Context Constraints

● Deploy SQL Server Big Data Clusters on Red Hat OpenShift

Acknowledgements
Bringing SQL Server and Big Data Clusters to the OpenShift Container Platform has been a real team effort.
Red Hat provided our team with valuable help, bootstrapping our initial efforts, as well as providing best
practice guidance during implementation. Security and trust are critical for both companies and so we
appreciate the valuable input and contributions of Dan Walsh, Senior Distinguished Engineer at Red Hat, and
Michael Nelson, Principal Software Engineering Manager at Microsoft, who collaborated on this technical
paper.

7

Appendix 1 – Custom BDC SCC

allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities:
- SETUID
- SETGID
- CHOWN
- SYS_PTRACE
apiVersion: security.openshift.io/v1
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny
kind: SecurityContextConstraints
metadata:
 annotations:
 kubernetes.io/description: SQL Server BDC custom SCC is based on 'nonroot' built-in
SCC plus additional capabilities.
 generation: 2
 name: bdc-scc
readOnlyRootFilesystem: false
requiredDropCapabilities:
- KILL
- MKNOD
runAsUser:
 type: MustRunAsNonRoot
seLinuxContext:
 type: MustRunAs
supplementalGroups:
 type: RunAsAny
volumes:
- configMap
- downwardAPI
- emptyDir
- persistentVolumeClaim
- projected
- secret

8

 Copyright
The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of
publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on
of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. Microsoft makes no warranties, express or implied, in this document.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (ele
mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subje
document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give y
any license to these patents, trademarks, copyrights, or other intellectual property.

© 2012 Microsoft Corporation. All rights reserved.

Microsoft, list Microsoft trademarks used in your white paper alphabetically are either registered trademarks or trademarks o
Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

