
Visual
COBOL
NEW APPLICATION MODERNIZATION TOOLS
FOR THE JAVA DEVELOPER

®

00_COBOL2_AM.indb 100_COBOL2_AM.indb 1 4/19/21 5:08 PM4/19/21 5:08 PM

Copyright © 2021 by Micro Focus. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted un-der
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
Micro Focus for permission should be addressed to the Legal Department, Micro Focus, 700 King Farm Blvd,
Suite 125, Rockville, MD 20850, (301) 838-5000, fax (301) 838-5034.

Micro Focus, Net Express, Server Express, Visual COBOL, COBOL Server, and Micro Focus Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

The book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Micro Focus, Box Twelve Press, nor their
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

This document is provided “as-is”. Information and views expressed in this document, including URL and other
Internet Web site references, may change without notice. Some examples depicted herein are provided for
illustration only and are fictitious. No real association or connection is intended or should be inferred.

ISBN: 978-0-578-79047-3

This book was set in Akzidenz-Grotesk by Box Twelve Press.

00_COBOL2_AM.indb 200_COBOL2_AM.indb 2 4/19/21 5:08 PM4/19/21 5:08 PM

Contents at a Glance

CHAP TER 1

Introduction 	 1

CHAP TER 2

Visual COBOL and Eclipse	 5

CHAP TER 3

What is Visual COBOL for JVM?	 19

CHAP TER 4

A Short Guide to Procedural COBOL	 29

CHAP TER 5

An Example Application	 41

CHAP TER 6

A COBOL-Based REST Service	 67

CHAP TER 7

 Automated Testing	 99

CHAP TER 8

User Interface Modernization	 127

CHAP TER 9

Containerizing COBOL Applications	 155

CHAP TER 10

COBOL and Microservices	 185

00_COBOL2_AM.indb 300_COBOL2_AM.indb 3 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 400_COBOL2_AM.indb 4 4/19/21 5:08 PM4/19/21 5:08 PM

Contents

CHAP TER 1

Introduction 	 1
What Is Visual COBOL for JVM?... 1
Why Have We Written This Book?... 2
Who Is This Book For?... 2
Prerequisites... 3
Downloading the Examples.. 4
Summary.. 4

CHAP TER 2

Visual COBOL and Eclipse	 5
Hello World.. 5
Creating COBOL JVM Projects in Eclipse... 7
Using Maven with Visual COBOL... 10
Summary... 18

CHAP TER 3

What is Visual COBOL for JVM?	 19
COBOL Dialects... 19
What is Managed Code?...20
COBOL Source Formats... 21
The Visual COBOL Object Model..23
Summary...27

CHAP TER 4

A Short Guide to Procedural COBOL	 29
COBOL Applications...30
Structure of a COBOL program... 31
Procedure Division..34
Copybooks..38
Summary...40

00_COBOL2_AM.indb 500_COBOL2_AM.indb 5 4/19/21 5:08 PM4/19/21 5:08 PM

vi  Contents

CHAP TER 5

An Example Application	 41
 Introducing the Example...41
Generating Example Data..59
Calling COBOL from Java..61
Summary...66

CHAP TER 6

A COBOL-Based REST Service	 67
The Application..67
The Interoperation Layer...70
The MonthlyInterest Class..85
Creating a REST Interface ..88
Summary...97

CHAP TER 7

 Automated Testing	 99
Strategies for Testing...99
Introducing MFUnit..101
Testing the BusinessRules Layer..107
Testing the Interoperation Layer...117
Testing the Application End-to-End...120
 Summary..126

CHAP TER 8

User Interface Modernization	 127
UI Choices ...127
The Credit Service UI Application...130
Getting Started with React...135
Summary..154

00_COBOL2_AM.indb 600_COBOL2_AM.indb 6 4/19/21 5:08 PM4/19/21 5:08 PM

	 Contents    vii

CHAP TER 9

Containerizing COBOL Applications	 155
Containerizing Applications for the Cloud..155
Changing from ISAM to a Database ...161
Running the Revised CreditService Application..173
Containerizing the CreditService...175
Summary ..183

CHAP TER 10

COBOL and Microservices	 185
Why Do I Need a Platform? ..185
Kubernetes..187
Serverless Computing..199

Index	 211

00_COBOL2_AM.indb 700_COBOL2_AM.indb 7 4/19/21 5:08 PM4/19/21 5:08 PM

About the Author
Paul Kelly has worked at Micro Focus for more than 20 years. Paul worked on Visual
COBOL for 10 years, initially on Visual Studio development, and later on Eclipse,
before helping to develop a cloud-based SaaS offering. In 2017, Paul wrote Visual
COBOL: A Developer’s Guide to Modern COBOL. In his spare time, Paul plays the
guitar and experiments with different ways of making coffee.

Dedication
This book is dedicated to my Mum for being an inspiration and to my wife and daughter for their
patience through all the weekends I missed with them while I wrote this.

Acknowledgements
This book would not have been possible without the expert help and assistance of the following
people:

	■ The Micro Focus COBOL development team that builds and delivers such brilliant software

	■ Robert Sales, the father of Visual COBOL

	■ Mark Conway for being an advocate for these books

	■ Ed Airey for leading the project

	■ Scot Nielsen for assistance and advice

	■ The technical reviewers who checked the examples and kept me honest: Stephen Gennard,
Guy Sofer, and Sezgin Halibov

	■ Box Twelve Press for editorial and publishing support

00_COBOL2_AM.indb 800_COBOL2_AM.indb 8 4/19/21 5:08 PM4/19/21 5:08 PM

1

C H A P T E R 1

Introduction

This chapter outlines the purpose of this book and its intended audience.

What Is Visual COBOL for JVM?
Visual COBOL for JVM is COBOL compiled to Java bytecode. Putting COBOL on the
JVM (Java Virtual Machine) enables object-oriented extensions to COBOL so that you can
code classes, objects, and methods, just as you can with Java. But you can also compile
existing procedural COBOL code and run it on the JVM, too.

Visual COBOL does not convert COBOL source to Java source; it compiles COBOL
source directly to JVM bytecode, so that all the intellectual assets in your COBOL source
code base are retained. This is a unique feature of Visual COBOL for JVM—there are trans-
lators that will convert your code from procedural COBOL to Java, but machine-translated
code is harder to work with in the future than the original human-authored source.

Once COBOL source is compiled for the JVM, you can easily integrate legacy code with
newer environments. For example, you can run COBOL code directly on an application
server, and use it as the back end to REST services provided by Java. The Java and the
COBOL can interoperate directly because they are both running on the same JVM. You
can also step seamlessly between one language and the other when you are debugging.
COBOL is one of several languages that are able to run on the JVM, although COBOL
can also be compiled as .NET code or native code. (When you compile to native code,
the Visual COBOL extensions to the language are not available.)

You can use the Visual COBOL syntax to extend your legacy code and provide modern
APIs to access it, using a language that produces artifacts easily consumed from Java,
while being able to interoperate with the record structures that are found in COBOL
business applications.

00_COBOL2_AM.indb 100_COBOL2_AM.indb 1 4/19/21 5:08 PM4/19/21 5:08 PM

2  Introduction

Chapter 4 explains the platform in more depth.

Why Have We Written This Book?
Micro Focus decided to follow up to Visual COBOL—A Developer’s Guide to Modern
COBOL with a deeper dive into some topics. This book focuses solely on Visual COBOL
for JVM as we are looking at different ways of deploying applications, something that is
platform specific.

You don’t have to read Visual COBOL—A Developer’s Guide to Modern COBOL before
reading this book—but you might find it useful to have it around as a reference, particularly
if you are not familiar with Visual COBOL. There is some overlap between this book and
the other one, but whereas the developer’s guide focuses attention on the Visual COBOL
language, this book looks more closely at the practical issues of deploying COBOL ap-
plications on JVM platforms.

Who Is This Book For?
The primary audience for this book is Java developers who need to work with a legacy
COBOL application. We’ve assumed knowledge of Java and the JVM, and familiarity
with OO concepts. We’ve provided an introduction to the new syntax in Visual COBOL
that enables object-orientation and also to the way data structures are defined in legacy
procedural COBOL programs. This should be enough to understand the examples in this
book and will help you with other legacy code you have to work with.

But it is not intended as a detailed primer on the COBOL language. If you want to learn
more about Visual COBOL, Visual COBOL—A Developer’s Guide to Modern COBOL
provides much more detail about the syntax that enables you to write classes and interfaces
using a simplified and straightforward COBOL dialect. And there are many books available
from which you can learn the traditional COBOL syntax used to create many line-of-business
applications.

COBOL programmers who need to migrate existing applications to new platforms will
also find a lot of helpful information in this book. However, if you don’t have any background
with object-oriented concepts or Visual COBOL, I’d recommend that you work through
some of the examples in Visual COBOL—A Developer’s Guide to Modern COBOL first.

Visual COBOL—A Developer’s Guide to Modern COBOL
Since I’ve mentioned Visual COBOL—A Developer’s Guide to Modern COBOL many
times in this introduction, you might be wondering what it is and where you can get it. It
was written by the same author as this book, and provides tutorial and reference information

00_COBOL2_AM.indb 200_COBOL2_AM.indb 2 4/19/21 5:08 PM4/19/21 5:08 PM

	 Prerequisites    3

on the Visual COBOL syntax, using worked examples. It also covers Visual COBOL for
.NET—yes, you can compile exactly the same sources to either .NET or JVM, enabling
cross-platform programming if required.

It is available as a free e-book from Micro Focus, or as a printed copy from Amazon (just
search for Visual COBOL on the Amazon website). To get the free download from Micro
Focus, go to https://www.microfocus.com/campaign/visual-cobol-book/.

Prerequisites
To be able to run the examples in this book, you will need Visual COBOL for Eclipse. This
includes an Eclipse IDE with plug-ins that enable background parse, syntax assistance,
compiling, and debugging of your COBOL code. This product is available for Windows
and several Linux distributions, including SUSE and Red Hat. Not all Visual COBOL
products include the Eclipse IDE—some are designed as server-only products, and there
is also a line of products known as the Visual COBOL Development Hub, which provides
command-line tools such as the compiler, but which can also be driven remotely from a
Visual COBOL Eclipse on another machine.

Go to https://www.microfocus.com/products/visual-cobol/ for an introduction to the
range of Visual COBOL products. In addition to commercially licensed products from
Micro Focus, you can also download Visual COBOL Personal Edition, which is free for
noncommercial use (see https://www.microfocus.com/en-us/products/visual-cobol-
personal-edition/overview).

The examples have been compiled, built, and run using Visual COBOL 4.0. You can use
earlier product releases, but be aware that there might be particular syntax that will not al-
ways work with earlier versions of the product. The object-oriented features of the language
are always evolving to make the language more productive. Backward compatibility is
important to Micro Focus, so older code can always be compiled with later product versions,
even if later code can’t always be compiled with earlier product versions.

You will also need a JDK installed. The JDK version depends on the Visual COBOL
product you are using, but at the time of writing, Visual COBOL 4.0 has a prerequisite of
Oracle JDK 8—download and install the latest version of JDK 8 on your Visual COBOL
machine.

You can run most of the examples on Windows or Linux; we have tested them on
Windows and SUSE Enterprise Linux Desktop 12, service pack 2. Visual COBOL itself is
tested on a wider number of platforms—at the time of writing, you can see the whole list
at https://www.microfocus.com/products/visual-cobol/tech-specs/.

00_COBOL2_AM.indb 300_COBOL2_AM.indb 3 4/19/21 5:08 PM4/19/21 5:08 PM

4  Introduction

Downloading the Examples
All of the examples are available online and supplied with Eclipse project files so that
you can import them directly into an Eclipse workspace. Some projects are used in more
than one chapter—we would recommend that you use a separate workspace to run the
examples from each chapter. To download them, go to https://github.com/MicroFocus/
visual-cobol-for-java-developers-book.

Summary
This book is a primer to practical techniques for using Visual COBOL for JVM to build
applications that extend existing COBOL code using modern frameworks such as Spring. It
is aimed primarily at Java developers, but COBOL developers who have an understanding
of Java and OO will also find it very useful.

For a comprehensive guide to the Visual COBOL language itself, see the sister book
Visual COBOL—A Developer’s Guide to Modern COBOL. You can get the free e-book
from https://www.microfocus.com/campaign/visual-cobol-book/. Or you can get a printed
copy from Amazon (just search for Visual COBOL on the Amazon website).

00_COBOL2_AM.indb 400_COBOL2_AM.indb 4 4/19/21 5:08 PM4/19/21 5:08 PM

5

C H A P T E R 2

Visual COBOL and Eclipse

This chapter is a short “getting started” for readers who haven’t used Visual COBOL before,
but it also explains the use of Maven with Visual COBOL (something not yet covered in
Micro Focus documentation). In this chapter, you’ll learn about:

	■ Creating and running “Hello World” in Visual COBOL

	■ Creating COBOL JVM projects in Eclipse

	■ Turning COBOL components into Maven dependencies so that they can be
consumed more easily from Java

If you haven’t already done it, install a Java Development Kit (JDK) and Visual COBOL
for Eclipse product (see the “Prerequisites” section in Chapter 1).

Hello World
The simplest Hello World we can write with Micro Focus COBOL is shown in Listing 2-1.

Before running any of the examples in this book, you must ensure you
have a compatible Java Development Kit (JDK) installed as explained in the
“Prerequisites” section of Chapter 1. On Linux, the PATH and JAVA_HOME
environment variables must point to your Java installation before you run
cobsetenv as described in the following steps.

Listing 2-1  Hello World

 display “Hello World”

00_COBOL2_AM.indb 500_COBOL2_AM.indb 5 4/19/21 5:08 PM4/19/21 5:08 PM

6  Visual COBOL and Eclipse

To run this program:

1.	 Create a text file called HelloWorldProcedural.cbl, and enter the code shown in
Listing 2-1. Start the text in column 8 or later (different COBOL source formats
are explained in the “COBOL Syntax and Source Formats” section in Chapter 3).

2.	 If you are running Visual COBOL on Windows, open a Visual COBOL command
prompt (this is part of the Visual COBOL menu group). If you are running Visual
COBOL on Linux, open a command prompt and run
. cobsetenv
in the Visual COBOL bin directory (usually /opt/microfocus/VisualCOBOL/bin)
before proceeding.

	 Change directory to the location where you created the file, and enter the
compile command for Windows or Linux:
Windows:

	 cobol HelloWorldProcedural.cbl jvmgen;

	 Linux:

	 cob –j HelloWorldProcedural.cbl

The compiler creates the file HelloWorldProcedural.class in the same directory
as the source file.

3.	 Run it on Windows or Linux:

	 Windows:

	 java HelloWorldProcedural

	 Linux:

	 cobjrun HelloWorldProcedural

On Linux platforms, you normally run COBOL programs (or Java programs that
call COBOL) using the cobjrun command. This command sets up the COBOL
run-time environment before invoking Java to run the bytecode; it also ensures
UNIX signal handling will work correctly with the COBOL run-time. See the
Micro Focus Visual COBOL documentation for more information about cobjrun.

On Windows, opening a COBOL command prompt (or running createnv.bat in
your Visual COBOL installation directory) puts COBOL run-time files on the
CLASSPATH—so you can run the .class file with the java command.

00_COBOL2_AM.indb 600_COBOL2_AM.indb 6 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating COBOL JVM Projects in Eclipse    7

Writing Hello World as a Class
In the previous section, we wrote a Hello World program. It’s very short compared with the
Java equivalent. However, our program was just procedural COBOL, and we could have
compiled it to native code and it would have executed the same.

Visual COBOL is able to compile procedural COBOL code so that it can compile
existing legacy COBOL code. It does this by actually creating the bytecode for a class,
so that to the JVM, it looks like a Java class, and running it creates a single instance of
the synthesized class and then executes the program code. We’ll look at some of the
implications of this later in the book when we use COBOL RunUnits to run our code in
environments such as application servers.

That’s what the compiler does, but we can also choose to write “Hello World” as a
class with a static method (see Listing 2-2)—which is the way “Hello World” is usually
written in Java. The syntax looks different to Java, but there’s a class identifier, a method
identifier, and the method is marked as static. The parameters to the main method are an
array of strings (the equivalent to String[] args in Java). However, “string” is a reserved
word in Visual COBOL, but it is equivalent to declaring a java.lang.String in Java. There
are a few classes that are represented as “native” types in Visual COBOL, which makes
it much easier to write cross-platform code that runs on .NET or Java. See Chapter 14 in
Visual COBOL—A Developer’s Guide for more information.

Listing 2-2  Hello World written as a class

 class-id HelloWorld.

 method-id main(args as string occurs any) static public.

 display “Hello World”

 end method.

 end class.

You can compile and run this program the same way you did HelloWorldProcedural in
the previous section.

Creating COBOL JVM Projects in Eclipse
We are going to assume that you have some familiarity with Eclipse already, and just
introduce the plug-ins used for working with COBOL. As you will learn later in the book,
Visual COBOL supports compilation to either native code or Java bytecode. You can
create projects for either type of executable in Eclipse, but in this book, we are only really
concerned with compiling to JVM.

00_COBOL2_AM.indb 700_COBOL2_AM.indb 7 4/19/21 5:08 PM4/19/21 5:08 PM

8  Visual COBOL and Eclipse

Understanding the COBOL Perspective in Eclipse
On Windows, you can start Eclipse from the Start menu. The Micro Focus menu group
for Visual COBOL might be named Micro Focus Enterprise Developer, Micro Focus Team
Developer, or Micro Focus Visual COBOL depending on which product you have installed.
The menu group will have an icon to start Eclipse.

On Linux systems, there may be a Micro Focus COBOL icon on the desktop to start
Eclipse, or you can open a command prompt and use the cobsetenv command to set up
a COBOL environment (see the “Hello World” section earlier in this chapter). Then, you
can enter the eclipse command to start Eclipse for Visual COBOL.

Once Eclipse is running and you have selected or created a workspace, you can open
the COBOL Perspective. You can find it from the Eclipse menu: Window > Perspective
> Open Perspective > Other. Once you’ve opened the COBOL Perspective once, there
is also a toolbar icon (the blue-bordered “CBL” box) to switch back to it after you’ve been
using a different perspective.

The COBOL Perspective is very useful for working with COBOL projects. It opens the
COBOL Explorer window. This looks a little like the Project Explorer, but has a COBOL-
centric perspective; it only shows COBOL projects.

If you right-click on a COBOL project and select Properties, you’ll see a Micro Focus
group on the left side of the Properties window (see Figure 2-1). This has all the settings
for a COBOL project. You can see these properties from the COBOL Explorer or the
Project Explorer, but you can’t see them from the Package Explorer.

Figure 2-1  Micro Focus group in the Build Properties window

00_COBOL2_AM.indb 800_COBOL2_AM.indb 8 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating COBOL JVM Projects in Eclipse    9

Creating and Running JVM Hello World in Eclipse
To create a COBOL JVM project for Eclipse:

1.	 Open the COBOL Perspective as explained in the previous section.

2.	 Click File > New > COBOL JVM Project. (If you didn’t select the COBOL
Perspective, COBOL JVM Project doesn’t appear on the menu after you click
New, but you can still find it by clicking Other and filtering the Wizards list by
COBOL.)

3.	 Enter HelloWorld as the project name. By default, Eclipse will create your
project under your workspace directory, but you have the option of deselecting
Use default location and putting the project somewhere else.

4.	 Click Finish.

You now have an empty project. If you use the COBOL Explorer to look at it, you will
see a src directory as well as folders for the COBOL JVM Runtime System and the JRE.
The project structure is similar to the structure of an Eclipse Java project.

Next, to add some code to the project:

1.	 Click File > New > COBOL JVM Class. This opens the New COBOL JVM
Class dialog box. It looks very similar to the dialog box for creating a new Java
class.

2.	 Enter HelloWorld as the name and click Finish.

3.	 Expand the src folder in the COBOL Explorer and you can see the default
package and below it HelloWorld.cbl. The wizard has created some default
template code inside HelloWorld.cbl, but you can delete all of it and replace it
with the code in Listing 2-2, and then save your changes.

The Eclipse default is to build projects automatically each time a source code change
is saved, so the console window should show (among other things) the message “BUILD
SUCCESSFUL”.

Finally, to run Hello World:

1.	 Right-click on the HelloWorld project in the COBOL Explorer.

2.	 Click Run As > COBOL JVM Application.

3.	 A Select COBOL JVM Application dialog box opens. Select HelloWorld from the
list and click OK.

You should see Hello World in the Eclipse console. If you click Run > Run Configurations,
there is now an Eclipse run configuration for HelloWorld.

00_COBOL2_AM.indb 900_COBOL2_AM.indb 9 4/19/21 5:08 PM4/19/21 5:08 PM

10  Visual COBOL and Eclipse

Using Maven with Visual COBOL
Maven has become a de facto standard for representing the dependencies of Java projects.
Other popular build engines such as Gradle will import Maven POM files and will con-
sume dependencies stored in Maven repositories. The easiest way to consume COBOL
dependencies in any sizable Java project is to make its artifacts available through Maven.

Visual COBOL doesn’t yet have native Maven support, but we will show you that it is
relatively easy to make a COBOL project consumable from a Java Maven project.

A Quick Introduction to Maven
This section is a 30-second introduction for any readers who haven’t used Maven. A Maven
project is defined by a file called pom.xml in the project’s root directory. This file is the
Project Object Model (POM). The POM file defines the artifact to be built and provides
an identifier and version number.

The identifier consists of a group ID and an artifact ID. Group IDs are constructed rather
like Java package names and are unique to an organization defining them. For example,
many Apache libraries are defined under the group ID “org.apache.commons.” The group
ID and artifact ID between them provide a global unique identifier for a library. The version
number enables a library dependency to be fixed to a particular version.

The POM defines all the dependencies required to build the project using the group
and artifact IDs and, optionally, the version number. When you build a Maven project, it
fetches all the dependencies from a repository.

Where is the repository? Maven actually relies on a hierarchy of repositories. It first
searches the local repository on the machine where Maven is running (this is in a directory
called .m2 in the user’s home directory). If it can’t find the dependency there, it fetches it
from a remote repository. By default, this is at http://repo.maven.apache.org, but you can
configure other repositories. Organizations often configure internal repositories to store
artifacts on their own servers.

Maven copies artifacts fetched from remote repositories to your own local repository
the first time they are requested, which makes subsequent builds much faster. Figure 2-2
shows the relationship between Maven, the POM file, and repositories. Maven reads the
POM file to get the build instructions and dependency list. It fetches dependencies from
the local repository if they are cached, or from one or more remote repositories, depending
on how your Maven system is configured. It then orchestrates the build process, producing
a final build artifact (which is also cached to your local repository).

POM file dependencies are transitive; each dependency fetched from a repository will
have a POM file that lists its own dependencies, and these are also fetched as needed.

00_COBOL2_AM.indb 1000_COBOL2_AM.indb 10 4/19/21 5:08 PM4/19/21 5:08 PM

	 Using Maven with Visual COBOL    11

JAR
JAR

JAR

build tools

Maven

source file

POM File
<dependency>

</dependency>

com.mfcobalbook.examples
Greetings

1.0

Repository

local
Repository

JAR

JAR

Figure 2-2  Maven build

Installing Maven
The copy of Eclipse installed with Visual COBOL already has support for Maven projects
built in, but you will need to install your own copy of Maven to work with the examples in
this book.

The home of Maven at the time of writing is https://maven.apache.org. You can find
instructions here to install it on Windows or on Linux. Many Linux distributions will also
make Maven available through their own package managers. If you are running SUSE
Enterprise or OpenSUSE, you can find Maven packages for installation through https://
software.opensuse.org/package.

Once you have Maven installed, make sure it is working by typing:

mvn –version

You should see a version label for Apache Maven, as well as some other information
listing JRE, locale, and operating system.

00_COBOL2_AM.indb 1100_COBOL2_AM.indb 11 4/19/21 5:08 PM4/19/21 5:08 PM

12  Visual COBOL and Eclipse

Creating a Maven Java Project with a COBOL Dependency
We will now set up a Java project with Maven and have it rely on a COBOL dependency.
The application is a multilingual “Hello World” that fetches strings from a COBOL pro-
gram. First, we’ll create the COBOL component and ensure that it adds itself to the local
repository every time it is built.

Then, we’ll create a Java project and include the COBOL component as a dependency.
Finally, we’ll build and run it to show that everything is working. This is a technique we are
going to use throughout the book.

The Project Structure
We are going to have a separate COBOL and Java project that together will make our
HelloWorld_II application. Before you start, create a folder called HelloWorld_II where
you will put the two other projects. Wherever you see HelloWorld_II in the following, put
in the full path to this folder.

Adding a COBOL Component to the Repository
To create a COBOL JVM project in Eclipse and package it as a .jar file:

1.	 Open the COBOL Perspective and click File > New > COBOL JVM Project.

2.	 Enter SalutationStore as the project name.

3.	 Deselect the Use default location check box and enter a location of
HelloWorld_II/SalutationStore. Click Finish.

4.	 Right-click on the SalutationStore project and click Properties.

5.	 Expand the Micro Focus group and click Packaging Configuration.

6.	 Check these two check boxes:

	■ Create packaging target in the build script

	■ Create JAR file after build

7.	 Click Apply and Close.

Every time this project builds, it creates a .jar file in the dist subdirectory. Now, we are
going to add a custom build step to the project to store it in the repository every time.
But first, we are going to create a POM file to describe the artifact we are storing. We
don’t have to do this, but it makes it easy to manage the COBOL JVM run-time system as
another dependency. This means we also need to add the COBOL JVM run-time system
to our repository.

00_COBOL2_AM.indb 1200_COBOL2_AM.indb 12 4/19/21 5:08 PM4/19/21 5:08 PM

	 Using Maven with Visual COBOL    13

There are a number of .jar files in the COBOL JVM run-time system; however, we add two
of them for this example. They need to be identified to Maven with a group ID, artifact ID, and
version number. The two .jar files to add are below (Maven identification in parentheses):

	■ mfcobol.jar (com.microfocus.cobol.rts, mfcobol, 4.0.0)

	■ mfcobolrts.jar (com.microfocus.cobol.rts, mfcobol, 4.0.0)
I’ve picked 4.0.0 as the version number because that’s the product version used while

writing this book—you should use the version number of the product you have installed.
Open a command prompt or terminal, and navigate to C:\Program Files (x86)\Micro

Focus\Visual COBOL\bin if you are on Windows, or /opt/microfocus/VisualCOBOL/lib
if you are on Linux. The exact path depends on the product you have installed—it’s Visual
COBOL if you’ve installed Visual COBOL, or Enterprise Developer if you’ve installed
Enterprise Developer.

Then, run these two commands:

mvn install:install-file -Dfile=mfcobolrts.jar

 -DgroupId=com.microfocus.cobol.rts –DartifactId=mfcobolrts

 -Dversion=4.0.0 –Dpackaging=jar

mvn install:install-file -Dfile=mfcobol.jar

 -DgroupId=com.microfocus.cobol.rts –DartifactId=mfcobol

 -Dversion=4.0.0 –Dpackaging=jar

These two files are now in your local repository, and can be included as dependencies in
any build. If we have a number of COBOL components in an application, they will all refer-
ence the COBOL RTS, but at build time, Maven recognizes that it is the same dependency
in a number of components and includes it once in the final build output.

Adding the Code
To add the code to the COBOL project:

1.	 Right-click on the src directory in your SalutationStore project and add a new
COBOL class to your project, with the package name com.mfcobolbook.
examples and class name SalutationStore.

2.	 Replace the template code with the code in Listing 2-3.

00_COBOL2_AM.indb 1300_COBOL2_AM.indb 13 4/19/21 5:08 PM4/19/21 5:08 PM

14  Visual COBOL and Eclipse

Listing 2-3  Salutation store code

 class-id com.mfcobolbook.examples.SalutationStore public.

 01 greetingsDictionary dictionary[string, string].

 method-id new.

 invoke initData()

 end method.

 method-id initData.

 create greetingsDictionary

 write greetingsDictionary from “Hello World” key “en”

 write greetingsDictionary from “Bonjour le monde” key “fr”

 write greetingsDictionary from “Hallo Welt” key “de”

 end method.

 method-id fetchGreeting(language as string)

 returning result as string.

 set language to language::toLowerCase()

 read greetingsDictionary into result key language

 invalid key

 set result to “I don’t speak this language”

 end-read

 end method.

 end class.

Adding a Custom Builder
We’ll add a custom builder to the SalutationStore project to ensure that the SalutationStore
is added to the repository each time it is built. First, we need a POM file to describe the
artifact and its dependencies. Add a file called pom.xml (see Listing 2-4) to the root of the
SalutationStore project.

Listing 2-4  POM file for SalutationStore

<?xml version=”1.0” encoding=”UTF-8”?>

<project xmlns=”http://maven.apache.org/POM/4.0.0”

 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”	

 xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-4.0.0.xsd”>

	 <modelVersion>4.0.0</modelVersion>

	 <groupId>com.mfcobolbook.cobol</groupId>

	 <artifactId>SalutationStore</artifactId>

00_COBOL2_AM.indb 1400_COBOL2_AM.indb 14 4/19/21 5:08 PM4/19/21 5:08 PM

	 Using Maven with Visual COBOL    15

	 <version>0.0.1-SNAPSHOT</version>

	 <packaging>jar</packaging>

	 <properties>

	 <cobolVersion>4.0.0</cobolVersion>

	 </properties>

 <dependencies>

 <dependency>

 <groupId>com.microfocus.cobol.rts</groupId>

 <artifactId>mfcobol</artifactId>

			 <version>${cobolVersion}</version>

 </dependency>

 <dependency>

 <groupId>com.microfocus.cobol.rts</groupId>

 <artifactId>mfcobolrts</artifactId>

			 <version>${cobolVersion}</version>

 </dependency>

 </dependencies>

</project>

To add the custom builder:

1.	 Right-click on the SalutationStore project, click Properties, and then click
Builders (it’s near the top of the Properties window).

2.	 Click New, and then from the Choose configuration type dialog box, select
Program and click OK.

3.	 A dialog box opens to edit a launch configuration. Give it the name
MvnInstall_SalutationStore.

4.	 You now need to set the Location and Working Directory fields. These
are different on Windows and Linux, and will also depend on where Maven is
installed on your system. We’ll refer to this as MAVEN_HOME.
Windows:
Set the Location to MAVEN_HOME\bin\mvn.cmd
Set the Working Directory to MAVEN_HOME
Linux:
Set the Location to /usr/bin/mvn.

5.	 Now, set the arguments. This is the same on all platforms:
install:install-file -Dfile=${build_project}/dist/SalutationStore.jar

-DpomFile=${build_project}/pom.xml

00_COBOL2_AM.indb 1500_COBOL2_AM.indb 15 4/19/21 5:08 PM4/19/21 5:08 PM

16  Visual COBOL and Eclipse

6.	 Finally, set when the builder should be run. Click the Build Options tab, and
under Run the builder, select only the two check boxes for During manual
builds and During auto builds.

Now, every time the Eclipse builds our project, it creates a .jar file (we added the instructions
to this to the project in the previous section). Then, the custom builder we created above
will put the .jar file in the local repository, storing it with the artifact ID, group ID, and ver-
sion number we put into pom.xml.

You can check that this is working correctly by going to the Maven repository directory
under your user directory (C:\users\username\.m2\repository on Windows or /home/user-
name/.m2/repository on Linux), and then going down the folder path to com, mfcobolbook,
examples till you find the directory for the version of the artifact specified in the POM file.

You can also look down com, microfocus, cobol, rts, to ensure the COBOL run-time .jar
files we added earlier are present. If not, check the procedure in the “Adding a COBOL
Component to the Repository” section, and watch for error messages when running the
Maven commands.

Consuming the Component from Java
To create a new Maven Java project in Eclipse and add our COBOL artifact as a dependency:

1.	 From Eclipse, open the Package Explorer view (Java projects aren’t visible in the
COBOL Explorer view).

2.	 Click New > Other and then type maven into the Wizards field.

3.	 Select Maven Project and click Next.

4.	 Select the Create a simple project check box and click Next.

5.	 Deselect the Use default Workspace location check box and enter a location
of HelloWorld_II/MultiLingualHelloWorld.

6.	 Click Next.

7.	 Fill in the fields on the New Maven project dialog box as follows:
Group ID:	 com.mfcobolbook.examples.java
Artifact ID:	 MultilingualHelloWorld
Version:		 .0.0.1-SNAPSHOT
Packaging:	 jar

Leave the other fields blank and click Finish.

8.	 Eclipse creates the MultilingualHelloWorld project, which contains src and target
folders, and a pom.xml file in the project root.

00_COBOL2_AM.indb 1600_COBOL2_AM.indb 16 4/19/21 5:08 PM4/19/21 5:08 PM

	 Using Maven with Visual COBOL    17

9.	 Open pom.xml to add the COBOL dependency to the pom.xml file. Eclipse
opens POM files in a multitabbed editor, with an Overview pane opened by
default. I find it easier to work directly with the XML—so open this by clicking the
right-hand tab at the bottom of the editor pane.

10.	 Add a <properties></properties> element to the file before the closing
</project> tag, to set the Java version to 1.8 (this is the version for Java 8).
Otherwise, Maven defaults to Java 1.5, and this will be set as the JRE on the
Eclipse build path for the project.

11.	 Add a <dependencies></dependencies> element to the file before the closing
</project> tag, and add a dependency for SalutationStore. The complete file is
shown in Listing 2-5.

12.	 Add a Java class with the name MultiLingualHelloWorld and package
com.mfcobolbook.java. Add the code in Listing 2-6.

13.	 You need to update your Eclipse project with the changes you made to pom.xml
before the Java project will build cleanly. Right-click MultiLingualHelloWorld
and click Maven > Update project.

Listing 2-5  POM file for Java component

<project xmlns=”http://maven.apache.org/POM/4.0.0” xmlns:xsi=”http://www.

w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://maven.apache.org/

POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd”>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.mfcobolbook.examples.java</groupId>

 <artifactId>MultiLingualHelloWorld</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <properties>

 <maven.compiler.source>1.8</maven.compiler.source>

 <maven.compiler.target>1.8</maven.compiler.target>

 </properties>		

 <dependencies>

 	 <dependency>

 		 <artifactId>SalutationStore</artifactId>

 		 <groupId>com.mfcobolbook.cobol</groupId>

 		 <version>0.0.1-SNAPSHOT</version>

 	 </dependency>

 </dependencies>

</project>

00_COBOL2_AM.indb 1700_COBOL2_AM.indb 17 4/19/21 5:08 PM4/19/21 5:08 PM

18  Visual COBOL and Eclipse

Listing 2-6  code for MultiLingualHelloWorld class

package com.mfcobolbook.java;

import com.mfcobolbook.examples.SalutationStore;

public class MultiLingualHelloWorld

{

	 public static void main(String[] args)

	 {

		 SalutationStore store = new SalutationStore();

		 System.out.println(store.fetchGreeting(“en”));

		 System.out.println(store.fetchGreeting(“fr”));

		 System.out.println(store.fetchGreeting(“de”));

		 System.out.println(store.fetchGreeting(“it”));

	 }

}

Running the Application
We can now run our Java application. To run it from Eclipse, right-click the MultiLingualHel-
loWorld project and click Run as Java Application. Select MultiLingualHelloWorld from
the dialog box and click OK. If everything is working, you’ll see the output:

Hello World

Bonjour le monde

Hallo Welt

I don’t speak this language

Summary
In this chapter, we started by building and running the simplest possible COBOL Hello

World from the command line. We finished with an application based on a Java project
that calls a COBOL project, with all the dependencies managed through Maven. This is a
technique we’ll be using throughout the book—COBOL business logic that is called from
Java. Having Maven manage the dependencies is a little more work when we are setting
projects up, but simplifies things greatly in the long run. The other important build system
for Java, Gradle, will also consume Maven dependencies, so if your build system is Gradle
based, you can use these techniques here as well.

We’ll be using this method to turn COBOL components into Maven artifacts throughout
this book, for example when we create a REST service using Spring Boot.

00_COBOL2_AM.indb 1800_COBOL2_AM.indb 18 4/19/21 5:08 PM4/19/21 5:08 PM

19

C H A P T E R 3

What is Visual COBOL
for JVM?

This chapter explains how Visual COBOL and the JVM fit together. It should be useful to
anyone who hasn’t yet had much exposure to Visual COBOL, whether they are a Java or a
COBOL programmer. It will help COBOL programmers to understand this chapter if they
have some basic Java knowledge already.

In this chapter, you’ll learn about:

	■ COBOL dialects

	■ The Micro Focus compiler and managed code

	■ COBOL source formats

	■ The Visual COBOL object model

COBOL Dialects
With more than 60 years of history, it’s no surprise that there is more than one dialect of
COBOL in use. Visual COBOL is relatively new as Micro Focus started experimenting
with it in in about 2002, as a way of using the .NET Common Language Runtime (CLR)
to provide object-oriented features.

It has matured rapidly, and is available for the Java Virtual Machine (JVM) as well as the
.NET framework and .NET core. However, the Visual COBOL compiler can compile any
dialect supported by Micro Focus to run in these environments, providing an easy route
to modernizing COBOL applications.

00_COBOL2_AM.indb 1900_COBOL2_AM.indb 19 4/19/21 5:08 PM4/19/21 5:08 PM

20  What is Visual COBOL for JVM?

For the rest of this book, all references to .NET and the .NET CLR apply to the
.NET framework (Windows only) and .NET Core (cross-platform). Visual COBOL
5.0 supports .NET Core as well as the .NET Framework.

The Micro Focus compiler supports most COBOL dialects; as well as standards ANSI
74 and ANSI 85, it can also compile source code written for most of the major mainframe
vendors over the last few decades. Compiler directives enable you to set a particular dia-
lect. A full discussion of dialects and the differences between them is beyond the scope
of this book. All the procedural code in this book has been written using the Micro Focus
dialect, which enables structured code and does not require all the divisions demanded
by some COBOL dialects.

This chapter serves as a lightning guide to the Visual COBOL syntax extensions, but
is not a comprehensive guide or tutorial. For that, you should read Visual COBOL –
A Developer’s Guide to Modern COBOL, which is available as a free e-book from Micro
Focus or as a printed copy from Amazon (just search for Visual COBOL on the Amazon
website). For the free download from Micro Focus, go to https://www.microfocus.com/
campaign/visual-cobol-book/.

What is Managed Code?
The Java Virtual Machine (JVM) is a processor that is defined in software rather than
hardware. The .NET Common Language Runtime (CLR) is another such virtual machine.
When you compile a Java program, the output is Java byte code that is executed by the
JVM rather than directly on the CPU of a computer.

We often refer to byte code as “managed code;” the term refers to code for either the
CLR or the JVM. Although the JVM and CLR have different specifications and implementa-
tions, there are a number of things they have in common. Managed code executable files
contain metadata as well as executable code and the environments they run on provide
automatic memory management, freeing up memory that is no longer in use (garbage
collection).

The metadata describes the executable code. For example, a .class file not only contains
all the executable code for the class, it also contains data that identifies the class, all the
methods and their signatures, and the fields in the class. By contrast, a native code file
consists only of executable code and callable entry points, with no metadata to provide
extra information about how the code should be called.

The Micro Focus COBOL compiler can compile COBOL code to either native or
managed code. But the object-oriented features of Visual COBOL are only available
when you compile to managed code – because they rely on the run-time environment of
either the JVM or the .NET CLR. Figure 3-1 shows the relationship between older COBOL
dialects, Visual COBOL, managed and native code.

00_COBOL2_AM.indb 2000_COBOL2_AM.indb 20 4/19/21 5:08 PM4/19/21 5:08 PM

	 COBOL Source Formats    21

The subject of this book is COBOL compiled to Java byte code and running on the
JVM. When COBOL code is compiled to Java byte code, it can run seamlessly inside
applications with Java code (or other languages compiled to JVM, like Scala or Kotlin).
Visual COBOL provides an excellent way of interfacing between older legacy code and
modern object-oriented code; it enables you to target modern cloud platforms as your
run-time environment.

Managed code

Runtime
environments

Java Byte CodeNative code

Chipset

COBOL
RTS

COBOL RTS

Java
Virtual

Machine

Java C
lass

Libraries

Executable
code formats

Executable
code formats

JVM
G

E
N

directive

Visual COBOL Compiler

Source code
Any COBOL

dialect

Source code
Visual COBOL

dialect

Figure 3-1  Source code dialects and run-time environments

COBOL Source Formats
COBOL dates back to the era of punch cards, which is why traditionally COBOL programs
had source lines that went from character position 8 to position 72. The first 6 characters
allowed line numbers, which were useful if someone dropped a deck of punched cards or
got them out of order. The ANSI 85 COBOL standard allows alphanumeric characters in
columns 1-6. Column 7 is an “indicator” column, used to denote comments or compiler
directives.

00_COBOL2_AM.indb 2100_COBOL2_AM.indb 21 4/19/21 5:08 PM4/19/21 5:08 PM

22  What is Visual COBOL for JVM?

In Micro Focus COBOL this is known as source format fixed. The Micro Focus compiler
also allows source format variable and source format free. Source format variable allows
source lines up to 255 bytes long, but character positions 1 to 7 have the same meanings as
in source format fixed. Source format free does not assign any special meaning to columns
1 to 7, although some characters in column 1 will be treated as the column 7 indicator
characters in fixed and variable format. In all COBOL formats statements can span several
lines. There is no end of statement marker like the semicolon in Java, although some verbs
have an optional explicit end token (ANSI 85 COBOL and later). For example:

READ

...

END-READ

A read statement can include a number of clauses, so END-READ makes the code easier
for people to understand.

Source format variable is the format used for most examples shipped with Visual COBOL
and is the one we’ve adopted throughout this book. However, to use the space available
for code more efficiently, columns 1 to 6 aren’t shown in the listings in the book. As we
aren’t using line numbers in the examples, these columns are always white space.

The sourceformat directive sets the source format for the compiler. In Visual COBOL it
is usually set at the project level through the Build Properties dialog, but you can override
it for a particular source file by including the sourceformat directive. For example:

$set sourceformat(free)

The $ must be in the column 7 for source formats fixed and any column preceded only
by spaces for variable. The sourceformat directive takes effect on the first line following
it. You can change source format more than once in a source file, which isn’t generally
recommended unless you have to deal with copybooks in different source formats. We
will discuss copybooks in more detail in the next chapter.

The American National Standards Institute (ANSI) ratified three standard versions
of COBOL, ANSI, ANSI 74, and ANSI 85. There have been many vendor-specific
dialects over the years. The Micro Focus COBOL compiler can compile most
COBOL source code into JVM byte code.

Comments
In source format fixed and source format variable, an asterisk in column 7 indicates that
the rest of the line is a comment. In source format variable *> anywhere that the rest of the
line is a comment. Listing 4-1 shows some COBOL code with two comments.

00_COBOL2_AM.indb 2200_COBOL2_AM.indb 22 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Visual COBOL Object Model    23

Listing 4-1  Comments in a COBOL program

* This is a “hello world” program

 display “Hello World” *> the display statement prints to console

Literals
A string literal is a sequence of characters between double quotes or single quotes. You
can concatenate two strings using the & operator.

Case Sensitivity
Micro Focus COBOL is not generally case-sensitive; keywords can be written in uppercase
or lowercase. Variable names are also not case-sensitive. Entry point and program names
are not case-sensitive on Windows, but they are case-sensitive on Linux/Unix. The case/
nocase directive enables you to force a particular behavior for code portability.

However, Visual COBOL has to work with the JVM, which is case-sensitive, so method
names, class names, and properties are treated in a case-sensitive way. Field names are
not case-sensitive when referenced directly within the class or program in which they are
declared. But if you reference a field using the self identifier, it is treated as case-sensitive.

The Visual COBOL Object Model
The Visual COBOL object model is the same as Java. You can define class types,
interfaces and enumerations. A class inherits from a single parent, and all classes are
ultimately descended from the root class, java.lang.Object. Classes can implement
any number of interfaces. The Visual COBOL compiler follows the same rules for type
matching as Java.

Visual COBOL also enables you to define a value-type. This is included for compatibility
with .NET code. In .NET, numerics and Booleans are all value-types. When you declare
a data item that is a value-type the storage is allocated where the item is declared – you
only use the new operator when using a constructor with parameters and you work with
the data directly rather than with a reference to it.

In Java, numerics and Booleans are primitives (in effect, the same as value types), but
there is no facility to define additional primitives either in the Java language or the JVM.
COBOL duplicates the assignment and copy semantics of value types, but in reality when
you define a value type in Visual COBOL for JVM, the compiler defines a class in your
byte code.

00_COBOL2_AM.indb 2300_COBOL2_AM.indb 23 4/19/21 5:08 PM4/19/21 5:08 PM

24  What is Visual COBOL for JVM?

Visual COBOL also has methods and fields as Java does, and you control access to
them with the public, private and internal modifiers (internal is the equivalent of no
access modifier in Java). However, Visual COBOL treats methods as public by default
and fields as private by default.

Visual COBOL also enables you to define properties, which is another borrowing from
.NET. Java only has properties by convention (methods that start with set or get are treated
as properties by most Java tools). You can define and access properties in Visual COBOL
as properties. A COBOL property will appear to a Java program as separate get and set
methods.

Outline of a Visual COBOL Class
Listing 3-2 shows a simple class that represents a circle. The Circle class demonstrates
a number of features of Visual COBOL syntax. The class header defines the package and
the class name, and is followed by the fields.

Listing 3-2  Simple outline class

*> Class header identifies namespace and class name

 class-id com.mfcobolbook.examples.Circle.

*> fields. All are “private” unless marked otherwise

 78 PI value 3.1415926.

*> SHARED-DATA is a constant available inside and outside

*> the circle class

 01 SHARED-DATA float-short value PI

 static public initialize only.

*> Field exposed as a read-only property. The field is private

*> but the read-only property is public by default.

 01 radius float-short property with no set.

*> Constructor. Public where there is no access modifier.

 method-id new (radius as float-short).

 set self::radius to radius

 end method.

 property-id Circumference float-short.

 getter.

	 set property-value to radius * SHARED-DATA * 2

 end property.

 method-id calculateArea() returning result as float-short.

 set result to radius * radius * SHARED-DATA

 end method.

00_COBOL2_AM.indb 2400_COBOL2_AM.indb 24 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Visual COBOL Object Model    25

 method-id main(args as string occurs any) static public.

 declare aCircle = new Circle(5)

 display aCircle::Circumference

 end method.

 end class.

The convention of each field being declared with a number at the start will look odd to
Java programmers but will make more sense when we look at group-items in Chapter 4.
A data item preceded by 78 is a constant and can be any type of numeric or string literal.

Visual COBOL contains data types that match the primitives available in the JVM. For
example, float-short is equivalent to Java’s float. Our Circle class also makes use of
properties and shows two different ways of declaring them. The first is to simply append
the property clause to the end of the declaration – radius is both a field and a property.
This particular property clause includes the with no set phrase, which means the property
can be read but not modified from outside the class.

We’ve also defined a property the other way, using a property-id header. This enables
you to provide a property that executes code. Again, this property only has a getter. If you
wanted to add a setter as well, you would include the setter heading before the end-
property.

We’ve also included a method – calculateArea(). This does not take any arguments
but returns a value. This could have been a property, too, but was written this way to show
a method that returns a value.

The constructor is the new method at the beginning of the class. The constructor is
always called new. Just as in Java, you can have overloaded constructors that have differ-
ent method signatures.

The main() method at the end of the class is a static public method that takes an array
of strings as its argument. This makes the class runnable with the java command. The first
statement in this method declares local variable aCircle. The declare verb can use type
inference to work out the type of the variable from the right side of the assignment – in
this case, the construction of a new Circle object. You can also explicitly set the type. For
example:

declare anotherCircle as type Circle

This declares an unitialized variable anotherCircle, which is of type Circle. The display
statement prints the Circumference property to the console.

00_COBOL2_AM.indb 2500_COBOL2_AM.indb 25 4/19/21 5:08 PM4/19/21 5:08 PM

26  What is Visual COBOL for JVM?

Packages
Visual COBOL has packages or namespaces like Java. A class declares its package name
in the class-id header along with the class name. When you want to use a class from
another package you can either:

	■ Fully qualify the class name with the package name, as you would in Java

	■ Import the package name with the ilusing compiler directive

You can set ilusing either for the project or at the start of an individual source file. When
you set ilusing on a source file, it applies only to that source file. If you set it on a project,
it applies to all files throughout the project. By default, all projects are set to import the
java.lang package – but if you are compiling short examples like the ones in this chapter
from the command line, include the following at the top of the sourcefile (don’t forget the
$ must go in column 7):

$set ilusing(java.lang)

Java only allows you to define one class per source file and requires that source files are
laid out in a directory structure that matches the package name. The Visual COBOL com-
piler does not require this by default, but the jvmsourcebase directive introduced in Visual
COBOL 4.0 enforces source file path and name requirements that are the same as Java.

New projects created in Eclipse have jvmsourcebase set by default, although you can
turn it off by unchecking Package to subdirectory matching in the build configuration.

Regardless of the setting of jvmsourcebase, the Visual COBOL compiler will always
generate .class files in a directory structure that matches the package name, just like the
Java compiler.

Exceptions
Visual COBOL has try... catch... finally blocks and can throw exceptions using the
raise verb. Listing 3-3 shows a short program that throws an exception, catches it, and
re-raises it. The finally block is always executed after code in the try block, regardless
of whether there was an exception.

Listing 3-3  Code that raises and catches an exception

 class-id com.mfcobolbook.examples.RaiseClass public.

 method-id Main (args as string occurs any) static public.

 try

 raise new Exception()

 catch e as type Exception

*> Log the exception

 display e::getMessage()

00_COBOL2_AM.indb 2600_COBOL2_AM.indb 26 4/19/21 5:08 PM4/19/21 5:08 PM

	 Summary    27

*> Rethrow this exception

 raise

 finally

 display “We always execute this”

 end-try

 end method.

 end class.

Visual COBOL does not provide exception checking. Unlike Java, methods do not define
the list of exceptions they might throw. This mostly simplifies your code, but there is one
case where it can cause problems: when you have Java code calling Visual COBOL code,
the Java compiler will complain when you try to catch a checked exception from COBOL.
The Java compiler can’t see a list of checked exceptions declared on the COBOL method,
so it marks it as an error.

The simplest workaround for this is to use RuntimeException as the base class for
implementing exception classes in COBOL. Because these are unchecked exceptions,
you can put them in Java catch blocks without the compiler errors.

Summary
In this chapter, we briefly looked at the Visual COBOL language and the similarities and
differences between it and Java. In the next chapter, we will look at procedural (non-object
oriented) COBOL, which is the kind of code that the majority of COBOL applications
written over the last 40 years are written in.

00_COBOL2_AM.indb 2700_COBOL2_AM.indb 27 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 2800_COBOL2_AM.indb 28 4/19/21 5:08 PM4/19/21 5:08 PM

29

C H A P T E R 4

A Short Guide
to Procedural COBOL

This chapter is aimed at the Java programmer who does not yet know much about procedural
COBOL; the kind of code found in COBOL applications that need modernizing. In this
chapter, you’ll learn:

	■ An overview of COBOL applications

	■ A brief explanation of how Visual COBOL solves the problem of modernizing these
applications so they can be run in environments like application servers or as Spring
Boot applications

	■ A brief outline of a procedural COBOL program

	■ Datatypes and records in procedural COBOL

	■ Copybooks

Although we are referring to “procedural COBOL” here, it is only to emphasize the
difference between COBOL and Visual COBOL. Visual COBOL is a superset of COBOL
that can compile any COBOL program but includes full support for object-orientation when
the target platform is either the JVM or .NET CLR. Throughout the rest of this chapter we
will simply refer to “COBOL”.

The goal of this chapter is to help you to read COBOL code rather than to write it. This
will help you when you start modernizing applications.

00_COBOL2_AM.indb 2900_COBOL2_AM.indb 29 4/19/21 5:08 PM4/19/21 5:08 PM

30  A Short Guide to Procedural COBOL

COBOL Applications
COBOL applications consist of one or more COBOL programs. A COBOL program looks
very different to a Java class. All the variables in a COBOL program are declared at the
start in the working-storage section. Working-storage is allocated when the program is
loaded. One program can load another by calling it (with the call verb). Working-storage
is only deallocated when the application ends (with a stop run statement) or when the
program is cancelled with the cancel verb.

A COBOL program can be called with arguments and these arguments can be passed
either by value, by reference, or by content (this is explained in the section “Program
Parameters and Entry Points”). Any parameters must be declared in the linkage section.

Some dialects of COBOL (including Micro Focus COBOL) enable re-entrant code
(code that can be called more than once concurrently). These dialects allow you to declare
variables in the local-storage section. There is a new allocation of local-storage on the
stack each time the program is called.

The ANSI 85 standard introduced structured programming to COBOL with block
structures like if...else...end-if, perform... end-perform, and evaluate... end-evaluate
(similar to the switch statement in Java).

COBOL has some very important strengths as a data processing language. It imple-
ments high-precision decimal arithmetic (up to 38 places), which is important when the
numbers you are crunching represent somebody else’s money. COBOL code for carrying
out financial calculations is much easier to understand than the equivalent in Java, where you
will have to use the BigDecimal class rather than just writing simple arithmetic expressions.

COBOL is also very efficient at representing data records, allowing the programmer
to create a record structure that resembles the way it will be stored in a file. COBOL
implementations support a file type known as Indexed Sequential Access Method (ISAM),
originally invented by IBM. Each record consists of a number of fields, one of which must
be a primary key. Optionally, other fields can be designated as secondary keys. ISAM
enables random access to records via primary or secondary keys.

Although ISAM has largely been supplanted by relational databases (and COBOL also
has support for SQL), it is still in use for some applications and can offer very high per-
formance for batch applications that have to process large numbers of records in a short
time. Micro Focus also provides tooling that enables you to migrate your ISAM data to a
relational database while still accessing it using the existing code.

Modernizing Applications with Visual COBOL
The object-oriented Visual COBOL code we looked at in the previous chapter represents
a significant set of enhancements to the traditional COBOL that is found in most exist-
ing applications. However, the Visual COBOL compiler can compile existing COBOL

00_COBOL2_AM.indb 3000_COBOL2_AM.indb 30 4/19/21 5:08 PM4/19/21 5:08 PM

	 Structure of a COBOL program    31

applications to run on the JVM and Visual COBOL classes and COBOL programs can
interoperate seamlessly with each other. There are three problems you need to solve when
using existing COBOL code to provide functionality to a Java application.

The first problem is the most basic one – how can I call a COBOL entry point from
Java? This is solved by the Visual COBOL compiler compiling your existing programs as
Java byte code. Because it is byte code rather than native code, you don’t need to use
Java Native Interface (JNI) to call it and you can also run it inside environments that will not
support calling native code from Java.

The second problem is that the record structures defined in COBOL don’t make much
sense to Java. As we’ll see later in this chapter, COBOL programs often describe complex
record structures and lay them out byte by byte. This second problem is solved by the
Visual COBOL language itself. You can declare the same record structures in a Visual
COBOL class that you can in a COBOL program and access the individual fields so that
you can remap them to fields and data types a Java program can work with. Visual COBOL
enables you to create an API that is easily consumed by Java applications. There is also
a Visual COBOL compiler feature known as “smart linkage” that automatically creates
wrapper classes for the records in a COBOL application; in simple cases, this enables you
to access COBOL data from Java without writing any new Visual COBOL code yourself.

The third problem is that each COBOL program in an application allocates all its memory
the first time it is loaded. This memory is global to the program and effectively shared. This
does not work well in modern application servers that are multithreaded and concurrent.
The Visual COBOL run-time helps solve this problem with run-units, which are described
in more detail later in this book.

Structure of a COBOL program
A procedural COBOL program has four divisions, each of which is identified by a header
as shown in the following snippet:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. Program-1.

* Contains information identifying program, author, date, etc

ENVIRONMENT DIVISION.

* Optional section which contains information specific to the OS

* and/or machine the program will run on.

 DATA DIVISION.

* Declares variables for use in the program

 WORKING-STORAGE SECTION.

 01 A-VARIABLE 			 PIC X(20).

 LINKAGE SECTION.

 01 A-PARAMETER			 PIC S9(9) COMP-5.

 PROCEDURE DIVISION.

* The statements making up the actual program.

00_COBOL2_AM.indb 3100_COBOL2_AM.indb 31 4/19/21 5:08 PM4/19/21 5:08 PM

32  A Short Guide to Procedural COBOL

In the Micro Focus COBOL dialect, the division headers are optional; with the exception of
the procedure division header that can include parameters to be passed to the program,
they have no actual effect. However, code that has been written for the mainframe will
include some or all of them.

We’ll cover the two most important divisions, the data division and procedure division,
in the next two sections.

Data Division
The data division is where all the data is declared for a program. It consists of any of the
following sections:

	■ File section: defines the structure of the records stored in those files.

	■ Working-storage section: Variables declared here are allocated when the program
is first loaded. In procedural COBOL, all variables are global to the program they
are declared in.

	■ Local-storage section: Storage for variables declared here is allocated on the stack
each time the program is called. Not all dialects of COBOL have this feature.

	■ Linkage section: When you declare any kind of variable or record in the linkage
section, you are only creating space for a memory pointer; you are not allocating
the actual storage for the variable. The linkage section enables you to address ar-
guments passed to your program by reference. (If you are compiling to managed
code, the linkage item will contain an object reference rather than a memory pointer).

Each data division section is optional, but they must appear in the order shown above.
Micro Focus COBOL allows you to omit the working-storage section header, but not
the others.

COBOL Data Declarations
COBOL data declarations look rather different than the way they look in Java. The
programmer not only declares the data but how it is stored.

Listing 4-1 shows a simple program with three variables. Items anInteger and
aDifferentInteger are both 32-bit unsigned integers - pic x(4) allocates 4-bytes. One is
declared as comp-5, which means it uses the native byte-ordering for the processor it is
running on. Comp-x data uses big-endian byte ordering (the most significant byte is stored
first). COBOL will handle the conversion from one to the other (when we move anInteger
to aDifferentInteger, for example).

There can be a small overhead to using comp-x data (for example, on Intel processors
comp-x items are converted to little-endian format before use in calculations). But records
that will be written to file should always use comp-x fields rather than comp-5 for portability.

00_COBOL2_AM.indb 3200_COBOL2_AM.indb 32 4/19/21 5:08 PM4/19/21 5:08 PM

	 Structure of a COBOL program    33

For example, if you write a file from a processor with a big-endian format (for example,
IBM RS/60000) and then read it with code running on a little-endian processor (like Intel
processors), data represented as comp-5 will be scrambled.

There are several computational formats in COBOL that define different ways of rep-
resenting numeric data. For example, comp-3 is decimal data (two decimal digits per byte)
and is often used in financial calculations because it avoids the rounding errors involved
whenever decimal fractions are represented in binary. All these formats are represented
using pic strings containing ‘9’ to represent a decimal digit, ‘S’ to represent the presence
of a sign, and ‘V’ to represent an implied decimal point. For example, PIC S999V99 USAGE
DISPLAY represents a 5 digit signed numeric field where the last 2 digits are considered
as two decimal places, and where the field is stored in character format.

Variable aString simply declares 100 bytes of storage and the program moves a short
literal into it.

Listing 4-1  Declaring and using data

 program-id. DataItems.

*> No DATA DIVISION header required in Micro Focus COBOL

 working-storage section.

 01 anInteger pic x(4) comp-5.

 01 aDifferentInteger pic x(4) comp-x.

 01 aString pic x(100).

 procedure division.

 move 99 to anInteger

 move anInteger to aDifferentInteger

 move “Hello there” to aString

 display anInteger space aDifferentInteger space aString

 stop run

Group Items
A COBOL group item (or record) enables the programmer to define a number of fields
that are grouped together under a single data item name. This enables you to define a
record (which you can then write to a file and read back). Although this seems like a rather
low-level way to do things compared to more modern languages, it is very efficient and is
one of the reasons why COBOL performs so well at all kinds of batch data processing.

A group item is very similar to a struct in the C language. A COBOL group item can
specify the layout and sizes of fields down to individual bytes, although compiler directives
enable you to align fields on set boundaries to make access more efficient on processors
with different word lengths. A COBOL group item can also contain subgroups and you
can redefine the layout of records.

00_COBOL2_AM.indb 3300_COBOL2_AM.indb 33 4/19/21 5:08 PM4/19/21 5:08 PM

34  A Short Guide to Procedural COBOL

For example, you can define an “employee” record with a number of common fields
(name, address, date of birth), but redefine other parts of the record to enable you to store
different information against different types of employee. The value of a flag field determines
which kind of record it is. You can then write all your employee records to a file and use it
each month when you run the payroll (for example).

Listing 4-2 shows a simple group item that represents a customer record. It has an
eight-character zip-code field that is redefined as a UK postcode with two separate sub-
fields. The redefines clause is similar to a union in C; the same storage is defined as a
different type and/or a different name.

The address-line is declared with an occurs clause. This means the item is repeated the
number of times defined by the occurs clause and can be referenced by index as shown
in the second line of the procedure division.

Listing 4-2  A simple group item

 program-id GroupItems.

 Working-storage section.

 01 cust-record.

 03 cust-name pic x(80).

 03 cust-address.

 05 address-line pic x(80) occurs 3.

 05 zip-code pic x(8).

 05 uk-post-code redefines zip-code.

 07 outward-code pic x(4).

 07 inward-code pic x(4).

 03 age pic 9(4) comp-x.

 procedure division.

 move “Director General” to cust-name

 move “BBC” to address-line(1)

 move “W1A” to outward-code

 move “1AA” to inward-code.

Procedure Division
The procedure division holds the program statements and can optionally be divided into
sections and paragraphs, where sections can contain multiple paragraphs.. By default,
execution falls through from one section and paragraph to the next, but when you use the
perform verb to execute a section or paragraph, control returns at the end of the section
or paragraph or when an exit section or exit paragraph is executed. A section header is
a section name followed by the word section and a period, whereas a paragraph header
is just a name followed by a period. The sentence before a section or paragraph header
must be terminated by a period. The period can appear at the end of a statement on the
same line or on a line on its own.

00_COBOL2_AM.indb 3400_COBOL2_AM.indb 34 4/19/21 5:08 PM4/19/21 5:08 PM

	 Procedure Division    35

Listing 4-3 shows a short program with two sections and one paragraph in the first
section. This program executes thefirst and thesecond section, then exits.

Listing 4-3  Paragraphs and sections in the procedure division

 program-id. Program1.

 procedure division.

 perform thefirst

 perform thesecond

 goback

* You must terminate the previous sentence with a period before

* starting a new section.

	 .

 thefirst section.

 display “thefirst”

 perform onea

 exit section.

	

* Paragraph onea

 onea.

	 display “one A”.

 thesecond section.

 display “thesecond”

 exit section

 .

Program Parameters and Entry Points
When one COBOL program calls another, it can pass some data and get a result back. You
specify the parameters a program expects with the optional using clause in the procedure
division header. The procedure division is the primary entry point for a COBOL program
and the one that is executed when the program is called. However, you can declare other
entry points inside a program using the entry header and these entry points can also have
parameters.

By default, all arguments in a call statement are passed by reference. So the called
program actually gets passed pointers to the data item in the caller’s memory space. In the
called program, these parameters must be declared in the linkage section. If an argument
is passed to the callee by reference, it can modify the value in order to pass a result back
to the caller. In fact, you can pass more than one result back since you can have several
by reference parameters.

00_COBOL2_AM.indb 3500_COBOL2_AM.indb 35 4/19/21 5:08 PM4/19/21 5:08 PM

36  A Short Guide to Procedural COBOL

You can also pass items by value, in which case the data is copied onto the stack and
accessed there by the called program.

You might occasionally see a call statement that passes an argument by content.
This copies the data into a separate area of memory, then passes a pointer to the new
area to the called program. To the called program it looks the same as an item passed by
reference, but any changes made are not passed back to the calling program. You might
occasionally see omitted or by reference omitted. This is the equivalent of passing a null
to the called program.

Finally, if you have a returning clause on the call statement, the called program can
return a numeric value using the special return-code register. The callee can either move
data into return-code or add a returning clause to the exit program or goback statement
used to return control to the caller. The return-code register is a signed numeric variable
of type comp and is four bytes long by default, although it is only two bytes long in some
dialects. The exact binary representation of a comp data item depends on the compiler
and platform.

Listing 4-4 shows two programs that illustrate most of the points explained above.
MainProgram loads Program2 and then calls the entry points in it. Because paramByRef is
passed by reference, Program2 is able to change the value of the string before returning
control to the caller. The last call passes aNumber by content; to the called program this
looks like a call by reference, but the reference is a pointer to a copy of the original data
so it remains unchanged when control returns to the caller. A result is passed back using
the return-code register.

There is generally no type checking in procedural COBOL, so you have to be very
careful when coding calls and entry points. And if a call statement doesn’t provide argu-
ments that the called program is expecting as by reference parameters, you will get an
access violation at run-time as the called program will be trying to read or write memory
without a valid pointer. If the program is compiled as managed code, this will show up as
a null pointer exception.

Micro Focus COBOL enables you to define CALL prototypes, and if you use
CALL prototypes, the compiler will validate call signatures at compile time. See
the Micro Focus documentation for more information.

Listing 4-4  Calls, parameters, and entry points

 program-id MainProgram.

 working-storage section.

 01 aNumber pic s9(9) comp-5.

 01 answer pic s9(9) comp-5.

 01 aString pic x(60).

00_COBOL2_AM.indb 3600_COBOL2_AM.indb 36 4/19/21 5:08 PM4/19/21 5:08 PM

	 Procedure Division    37

 procedure division.

* Load the other program

 call “Program2”

 move 32 to aNumber

 call “EntryOne” using by value aNumber

 returning answer

 display answer

 move “Hello world” to aString

 call “EntryTwo” using by reference aString

 display aString *> String value has been changed

 move 99 to aNumber

 call “EntryThree” using by content aNumber

 display aNumber *> aNumber unchanged because it was passed

 *> by content

 display return-code

 display aString

 program-id. Program2.

 working-storage section.

 01 result pic s9(9) comp-5.

 linkage section.

 01 paramByRef pic x(60).

 01 numberByRef pic s9(9) comp-5.

 01 paramByValue pic s9(9) comp-5.

 procedure division.

 display “Program loaded”

 goback.

 entry “EntryOne” using by value paramByValue.

 display “Entry one “ paramByValue

 multiply 2 by paramByValue giving result

 exit program returning result.

 entry “EntryTwo” using by reference paramByRef.

 display paramByRef

 move spaces to paramByRef

 move “goodbye world” to paramByRef

 exit program.

 entry “EntryThree” using by reference numberByRef.

 multiply numberByRef by 2 giving numberByRef

00_COBOL2_AM.indb 3700_COBOL2_AM.indb 37 4/19/21 5:08 PM4/19/21 5:08 PM

38  A Short Guide to Procedural COBOL

 move numberByRef to return-code

 exit program.

 end program Program2.

The exit program and goback statements are both ways of returning control from
called code to the caller. In Visual COBOL the exit method and goback state-
ments can be used to exit a method. Goback is a simpler and more consistent
way to return control, but it isn’t available in all COBOL dialects, so you might
see exit statements in applications you are modernizing.

Copybooks
In the earlier section on COBOL data declarations, we showed an example of a simple
record defined in the working-storage section. But traditional COBOL doesn’t have a
way of defining this as a new type, so what happens when we want to use our new record
definition in more than one place?

COBOL has the “copybook”. A copybook (also known as a “copy file”) is a source
code file that can be included inside another source file by using the copy verb. When a
copybook is used with the replacing clause, it’s possible to change the names of the items
declared so that they are unique inside a single program, effectively providing a reusable
type definition.

Copybooks are often shared between programs in an application because they contain
definitions of all the data that will be used. If you are familiar with C, you can think of them
as similar to header files: text the compiler inserts whenever it sees the copy statement.
Copybooks can be used to hold code as well as data.

Listing 4-5 shows a copybook that defines a very simple record that can represent
a date. The (PREFIX) on every line is not valid as part of a COBOL data name but will
be replaced by some other text every time the copybook is added to a program with the
copy... replacing statement. Listing 4-6 shows a simple program that returns the number
of days in a month. The linkage section uses a copy... replacing statement to bring in
the DATE.cpy copybook, replacing every occurrence of (PREFIX) with LNK. The effect is
that the linkage section now contains declarations for LNK-DATE, LNK-YEAR, etc. Any client
program that wants to use the date format defined here can also use copy... replacing
statements to declare date records.

00_COBOL2_AM.indb 3800_COBOL2_AM.indb 38 4/19/21 5:08 PM4/19/21 5:08 PM

	 Copybooks    39

In our example, we’ve made a call to GET-DAYS-IN-MONTH from the procedure division,
and used copy... replacing in the working-storage section to create a WS-DATE variable.

Listing 4-5  The DATE.cpy copybook defining a simple date format

* DATE

* YYYYMMDD format

 01 (PREFIX)-DATE.

 03 (PREFIX)-YEAR PIC 9(4).

 03 (PREFIX)-MONTH PIC 9(2).

 03 (PREFIX)-DAY PIC 9(2).

Listing 4-6  A program using DATE.cpy

program-id. Calendar.

 working-storage section.

 copy “DATE.cpy” replacing ==(PREFIX)== by ==WS==.

 78 GET-DAYS-IN-MONTH value “GET-DAYS-IN-MONTH”.

 01 MOD-RESULT pic 99 comp-5.

 linkage section.

 copy “DATE.cpy” replacing ==(PREFIX)== by ==LNK==.

 01 LNK-RESULT pic 99 comp-5.

 procedure division.

 move “20190704” to WS-DATE

 call “GET-DAYS-IN-MONTH” using WS-DATE MOD-RESULT

 display MOD-RESULT

 goback.

 ENTRY GET-DAYS-IN-MONTH using by reference LNK-DATE LNK-RESULT.

 evaluate LNK-MONTH

 when 1

 when 3

 when 5

 when 7

 when 8

 when 10

 when 12

 move 31 to LNK-RESULT

 when 2

 compute mod-result = function mod (LNK-YEAR, 4)

 if mod-result = 0

00_COBOL2_AM.indb 3900_COBOL2_AM.indb 39 4/19/21 5:08 PM4/19/21 5:08 PM

40  A Short Guide to Procedural COBOL

 compute mod-result = function mod(LNK-YEAR, 100)

 if (mod-result = 0)

 compute mod-result = function mod(LNK-YEAR, 400)

 if mod-result = 0

 move 29 to LNK-RESULT

 else

 move 28 to LNK-RESULT

 end-if

 else

 move 29 to LNK-RESULT

 end-if

 else

 move 28 to LNK-RESULT

 end-if

 when other

 move 30 to LNK-RESULT

 end-evaluate

 goback.

 end program Calendar.

Micro Focus COBOL and some other dialects have a typedef clause that can be
used to define types that can be reused across programs, similar to typedef in
C. However, they are not commonly used in legacy applications.

Summary
In this chapter, we looked at the COBOL language used in existing applications that
need modernizing, covering the use of group-items (or records) and copybooks. We also
discussed how Visual COBOL simplifies modernizing these applications. In subsequent
chapters we will show different ways COBOL code can be modernized to open it up for
reuse as part of new applications or to extend the reach of existing ones.

00_COBOL2_AM.indb 4000_COBOL2_AM.indb 40 4/19/21 5:08 PM4/19/21 5:08 PM

41

C H A P T E R 5

An Example Application

In the previous chapter, we talked about the challenges of modernizing COBOL applications.
This chapter introduces a set of simple COBOL programs that you can imagine forming
part of a larger application suite. In subsequent chapters, we will look at different ways we
can deploy and reuse this code.

In this chapter:

	■ Introducing the example

	■ Storing records

	■ Calculating interest

	■ Generating example data

	■ Calling COBOL from Java

 Introducing the Example
Our example consists of three separate COBOL programs that work together. You can
think of them as a fragment of a much larger suite of programs that would form a complete
application for managing credit card accounts. These programs don’t provide any kind
of UI on their own – they provide some business logic we want to reuse in a number of
different ways.

The three programs are:

	■ ACCOUNT-STORAGE-ACCESS is a collection of routines for writing, reading and
finding records for Customers, accounts, and transactions.

	■ Interest-Calculator is a program that calculates monthly interest for an account

	■ Calendar is a program that is used to find out how many days there are in a
particular month.

00_COBOL2_AM.indb 4100_COBOL2_AM.indb 41 4/19/21 5:08 PM4/19/21 5:08 PM

42  An Example Application

The application stores data in three COBOL indexed files (customer.dat, account.
dat and transaction.dat). The record structure for each file is defined in separate copy-
books – so client programs can include the copybooks to be able to understand the data.
The code itself is written as structured COBOL. The example is not as complex as a real
COBOL application, but it is intended to be easy to understand and to illustrate some
different approaches we can take to modernization.

This chapter describes our example and shows a very simplified example of calling
COBOL directly from Java using the Smart Linkage feature. In subsequent chapters, we’ll
show it modernized in different ways, with the functionality exposed as a REST API for
example or over a message queue. We’ll also look at different ways it could be deployed:
using Docker containers, serverless computing, or the Cloud Foundry platform. We’ll also
take a short look at how you could provide a modern UI for the application.

Importing the Example Projects
The procedural COBOL programs are in the BusinessRules project. There are two other
projects as well (DataBuilder and SmartLinkage) and we will import all three projects
together. Download the examples for Chapter 5 (see “Downloading the Examples” in
Chapter 1) and import them into a new Eclipse workspace as follows:

1.	 Start Eclipse and create an empty workspace by clicking File, Switch
Workspace and naming a new workspace.

2.	 Temporarily disable automatic builds in workspace by clicking Project,
Build Automatically (so that the Build Automatically option is no longer
checkmarked).

The projects you are going to import won’t build without errors until you change the
Custom Builder properties in the BusinessRules project. This shouldn’t cause a
problem, but occasionally Eclipse will get stuck in a loop where it keeps repeating the
project builds and starts again each time they fail.

3.	 Click File > Import, select General > Existing Projects into Workspace
from the Import wizard, and then click Next.

4.	 In the Select root directory field, enter the folder with the Chapter 5 examples.
The projects BusinessRules, DataBuilder and SmartLinkageClient should appear

in the Projects list.

5.	 Deselect SmartLinkageClient and then click Finish.

We will import this project later, but it won’t compile until we change directive settings
on the BusinessRules project later in this chapter.

00_COBOL2_AM.indb 4200_COBOL2_AM.indb 42 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    43

6.	 In the COBOL Explorer, right-click the BusinessRules project and click Build-
ers from the Properties window.

7.	 In the Builders pane, click mvn_businessrules and then click the Edit button.

8.	 Click the Environment tab and change the value of M2_HOME to the location
of your Maven installation.

9.	 If you are running on Linux, click the Main tab and change the value of the
Location field so that it ends in mvn instead of mvn.cmd.

10.	 In the Edit Configuration dialog, click OK.

11.	 In the Properties for Business Rules dialog, click Apply and Close.

12.	 Now re-enable Automatic Builds for the project.

The projects should now all build successfully, but if the mvn_businessrules builder
fails, select BusinessRules in the COBOL Explorer and then click Project, Clean, and
clean the BusinessRules project. The builders use Eclipse variables like project_loc,
and sometimes Eclipse doesn’t pick up the correct context to set them for the right project.

Storing Data in Indexed Files
COBOL has its own syntax for reading and writing data from files, including support for
indexed files. Each record in an indexed file has a primary key and optionally one or more
secondary keys. You can access records randomly by key. Secondary keys can include
duplicates.

IBM ISAM (Indexed Sequential Access Method) is probably the earliest implementa-
tion of COBOL indexed files (mid-1960s) and predates relational databases by about a
decade. Although most COBOL applications use an RDBMS for persisting data, there
are also many that still use indexed files; for some workloads, indexed files will deliver a
higher performance.

Our example uses indexed files to begin with as they bring their own set of problems for
application modernization – although later in the book, we recode the access data layer
to use a relational database instead. An application that uses a relational database runs
better in cloud environments and is easier to scale.

Our BusinessRules project stores data in three indexed files: customer.dat, account.
dat, and transaction.dat. There are copybooks in the BusinessRules project that define
the record layout for each type of file.

Listing 5-1, Listing 5-2, and Listing 5-3 show the copybooks for each record type. As
explained in the section on copybooks in Chapter 4, the compiler will substitute a string
specified by the programmer for the (PREFIX) in each of the record names when the copy-
books are included in a program by a copy… replacing statement.

00_COBOL2_AM.indb 4300_COBOL2_AM.indb 43 4/19/21 5:08 PM4/19/21 5:08 PM

44  An Example Application

We’ve deliberately kept the format of the records in these files very simple – a real
application would have more fields in each record and might use redefines clauses to
enable a single file to store several slightly different record formats.

For example, we haven’t provided anywhere to store a postal address in this set of files,
which is something a real application would want. The customer addresses could either be
stored as a set of fields in the CUSTOMER-RECORD or you might add an ADDRESS-ID
field and store them in a separate address file. A separate address file is closer to the way
it would be structured in a relational database, but COBOL applications using indexed
files do not always normalize data in this way, so in practice you might see data structured
in either way.

Listing 5-1  The CUSTOMER-RECORD.cpy copybook

* CUSTOMER-RECORD

 01 (PREFIX)-CUSTOMER-RECORD.

 03 (PREFIX)-CUSTOMER-ID PIC X(4) COMP-X.

 03 (PREFIX)-FIRST-NAME PIC X(60).

 03 (PREFIX)-LAST-NAME PIC X(60).

Listing 5-2  The ACCOUNT-RECORD.cpy copybook

 * ACCOUNT-RECORD

 01 (PREFIX)-ACCOUNT.

 03 (PREFIX)-ACCOUNT-ID PIC X(4) COMP-X.

 03 (PREFIX)-CUSTOMER-ID PIC X(4) COMP-X.

 03 (PREFIX)-BALANCE PIC S9(12)V99 COMP-3.

 03 (PREFIX)-TYPE PIC X.

 03 (PREFIX)-CREDIT-LIMIT PIC S9(12)V99 COMP-3.

Listing 5-3   The TRANSACTION-RECORD.cpy

* TRANSACTION-RECORD

 01 (PREFIX)-TRANSACTION-RECORD.

 03 (PREFIX)-TRANSACTION-ID PIC X(4) COMP-X.

 03 (PREFIX)-ACCOUNT-ID PIC X(4) COMP-X.

 03 (PREFIX)-TRANS-DATE. *> yyyymmdd

 05 (PREFIX)-YEAR PIC 9(4).

 05 (PREFIX)-MONTH PIC 9(2).

 05 (PREFIX)-DAY PIC 9(2).

 03 (PREFIX)-AMOUNT PIC S9(12)V99.

 03 (PREFIX)-DESCRIPTION PIC X(255).

00_COBOL2_AM.indb 4400_COBOL2_AM.indb 44 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    45

The record layouts only describe the way data is arranged; they don’t tell you which
fields are the primary and secondary keys. That is done where the files are declared inside
a program. We’ll look at that in the next section.

Accessing Files
In this section, we’ll look at the ACCOUNT-STORAGE-ACCESS program, which con-
tains all the code for reading and writing records. Rather than putting it all into one single
listing that would run across three pages of this book, we’ve split it into sections and will
describe each one in turn.

If you are familiar with COBOL already, you can skim through the next few sections to
get an idea of what the program does, but you won’t need the detailed explanations. If
your background is in Java, you should find the explanations helpful in understanding how
COBOL applications are structured.

Declaring the Files and Data
Listing 5-4 shows the start of the ACCOUNT-STORAGE-ACCESS program, where

the files are declared, and also the data-division, where all the data used by the program
is declared.

Listing 5-4  Declaring the files

 program-id. ACCOUNT-STORAGE-ACCESS.

 file-control.

 select Account-File assign to external accountFile

 file status is file-status

 organization is indexed

 access mode is dynamic

 record key is FILE-ACCOUNT-ID of FILE-ACCOUNT

 alternate record key is FILE-CUSTOMER-ID of FILE-ACCOUNT

 with duplicates

 .

 select Customer-File assign to external customerFile

 file status is file-status

 organization is indexed

 access mode is dynamic

 record key is FILE-CUSTOMER-ID OF FILE-CUSTOMER-RECORD

 alternate record key is FILE-LAST-NAME with duplicates

 .

 select Transaction-File assign to external transactionFile

 file status is file-status

00_COBOL2_AM.indb 4500_COBOL2_AM.indb 45 4/19/21 5:08 PM4/19/21 5:08 PM

46  An Example Application

 organization is indexed

 access mode is dynamic

 record key is FILE-TRANSACTION-ID

 alternate record key is FILE-ACCOUNT-ID

 of FILE-TRANSACTION-RECORD

 with duplicates

 alternate record key is FILE-TRANS-DATE with duplicates

 .

 data division.

 file section.

 fd Account-File.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by ==FILE==.

 fd Customer-File.

 copy “CUSTOMER-RECORD.cpy” replacing ==(PREFIX)== by ==FILE==.

 fd Transaction-File.

 copy “TRANSACTION-RECORD.cpy” replacing ==(PREFIX)== by ==FILE==.

 working-storage section.

 01 displayable pic x(255).

 78 MAX-ID value 2147483648.

 01 file-status.

 03 file-status-1 pic x.

 03 file-status-2 pic x.

 01 library-status-code pic xx comp-5.

 copy “PROCEDURE-NAMES.cpy”.

 linkage section.

 01 LNK-STATUS.

 03 LNK-FILE-STATUS-1 PIC X.

 03 LNK-FILE-STATUS-2 PIC X.

 copy “FUNCTION-CODES.cpy”.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by ==LNK==.

 copy “CUSTOMER-RECORD.cpy” replacing ==(PREFIX)== by ==LNK==.

 copy “TRANSACTION-RECORD.cpy” replacing ==(PREFIX)== by ==LNK==.

The program-id statement at the top identifies the program. The file-control paragraph
declares three files using the select statement. It is part of the environment division
(although our program omits the environment division header). The first name in the select
statement declares the variable name by which the file is referred to inside this program.
The assign to external clauses map the variable names to actual physical filenames. There
are different ways of assigning files and they are implementation-dependent because they
can differ from platform to platform.

00_COBOL2_AM.indb 4600_COBOL2_AM.indb 46 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    47

Our external mappings are done via environment variables that will be explained later.
There are several alternatives for mapping to external files with Micro Focus COBOL;
these are explained in the product documentation (look for information on the External
File Mapper).

The file status clause assigns a working-storage variable to receive the file status code
after each operation (success is “00”). The organization clause declares all our files as
indexed (other possibilities are relative or sequential). Setting the access mode to dynamic
means the files can be opened for input, output, or input-output. Finally, there are two record
key clauses: the first determines the primary key and the alternate record key enables you
to declare one or more secondary keys. Secondary keys can have duplicates.

The file section in the data division is where the actual record formats for the files
are declared. There is an fd (file-descriptor) for each of our three files. Each file-descriptor
is followed up by copy… replacing statement that brings in the actual record description.
In each of these, we’ve replaced ==(PREFIX)== with FILE, so that we end up with variable
names FILE-CUSTOMER, etc. Each time we read or write a record, these variables are where
the data is moved between file and program memory.

The working-storage section declares some variables the program needs to run. You’ll
remember that the file-control paragraph made file-status the location for storing the
status of each file operation; working-storage is where the data item is actually declared
and storage allocated.

The working-storage section also includes copybook PROCEDURE-NAMES.cpy.
This defines some constants for naming all the entry points in the program. This is a piece of
defensive coding; each entry point could be defined using a literal instead of a constant. For
example, entry “OPEN-ACCOUNT-FILE” and entry OPEN-ACCOUNT-FILE (where OPEN-ACCOUNT-
FILE has been declared as a constant) are equally valid. But using constants in the entry
points and the call statements (call OPEN-ACCOUNT-FILE) means we’ll spot any mistakes at
compile time rather than at run-time when a statement like call “OEN-ACCOUNT-FILE” fails
because the RTS can’t find the entry point.

Finally, the parameters to all the entry points in the program are declared in the linkage
section. Callers need to know the success or otherwise of file operations, so there’s a
LNK-STATUS to return file status codes. And so that we can pass records in and out of the
program, the copybooks defining the different record types are all copied in, but this time
with LNK replacing ==(PREFIX)== so that the variables have different names to the ones
declared in the file section.

Procedure Division Entry Point
The procedure division header is the main entry point to any program and is executed when
you call program-name. Calling a program loads it into memory, making all its entry points
available. Calling an entry point before the program has been loaded causes a run-time error.

00_COBOL2_AM.indb 4700_COBOL2_AM.indb 47 4/19/21 5:08 PM4/19/21 5:08 PM

48  An Example Application

The procedure division in ACCOUNT-STORAGE-ACCESS logs some useful informa-
tion on the console. It can be called more than once without having any other effects; this
is useful since any client program can call ACCOUNT-STORAGE-ACCESS to access
its entry points and it won’t matter if it has already been called before.

Listing 5-5 shows the procedure division and the display-file-names section. Although
display-file-names appears at the end of the program, we’ve shown the two together here.

The perform verb has a number of different meanings in COBOL; here it means execute
a named section or paragraph.

The display-file-names section prints the names of environment variables dd_custom-
erfile, dd_accountFile and dd_transactionFile to the console. These environment variables
contain the path and filename of each of the data files set up in the file-control paragraph
– this is one of the ways the Micro Focus external filemapper maps to an external name.
Displaying the names of the environment variables helps with troubleshooting.

Listing 5-5  AccountStorageAccess procedure division and display-file-names section

procedure division.

 perform display-file-names

 goback.

	 ...

	 display-file-names section.

 display “dd_customerFile” upon environment-name

 accept displayable from environment-value

 display “Customer file = “ displayable

 move spaces to displayable

 display “dd_accountFile” upon environment-name

 accept displayable from environment-value

 display “Account file = “ displayable

 move spaces to displayable

 display “dd_transactionFile” upon environment-name

 accept displayable from environment-value

 display “Transaction file = “ displayable

00_COBOL2_AM.indb 4800_COBOL2_AM.indb 48 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    49

Displaying Logs on the Console
In our example, we’ve made a conscious decision to write some logging information
directly to the console – mainly to make it easier to see what’s happening if the
program can’t open the data files for example. In a real application, you should
use a logging library to write log files, but there is no common standard for log-
ging in COBOL. Micro Focus provides a Consolidated Trace Facility for logging,
but it is not likely to be found in many legacy applications. We will talk more
about logging later in this book when we look at cloud deployments.

Reading and Writing Files
Most of the rest of ACCOUNT-STORAGE-ACCESS is code to open files and to either
write or find records. This program happens to manage three different files, but often you
might have a single program for each file. For each of our three files there is a separate
entry point to:

	■ Open a file (the open file entry points can also be used to close a file).

	■ Write a record.

	■ Read a record (either by primary or secondary key).

	■ Read the very last record (by primary key) in the file.

Listing 5-6 shows the code for the customer file. The code for the account and transaction
files is very similar, so we’ll only look at the customer code. You can examine the other
code for yourself when you download the examples for this chapter.

Listing 5-6  Reading and writing customer records

 ENTRY OPEN-CUSTOMER-FILE using by VALUE LNK-FUNCTION

 by reference LNK-STATUS

 evaluate LNK-FUNCTION

 when OPEN-READ

 open input Customer-File

 when OPEN-WRITE

 open i-o Customer-File

 when OPEN-I-O

 open i-o Customer-File

 when CLOSE-FILE

 close Customer-File

 end-evaluate

 move file-status to LNK-STATUS

 goback.

00_COBOL2_AM.indb 4900_COBOL2_AM.indb 49 4/19/21 5:08 PM4/19/21 5:08 PM

50  An Example Application

 ENTRY WRITE-CUSTOMER-RECORD using by value LNK-FUNCTION

 by reference LNK-CUSTOMER-RECORD

 LNK-STATUS.

 move LNK-CUSTOMER-RECORD to FILE-CUSTOMER-RECORD

 evaluate LNK-FUNCTION

 when WRITE-RECORD

 write FILE-CUSTOMER-RECORD

 when UPDATE-RECORD

 rewrite FILE-CUSTOMER-RECORD

 when other

 move “88” to file-status

 end-evaluate

 move file-status to LNK-STATUS

 goback.

 ENTRY DELETE-CUSTOMER-RECORD using by reference LNK-CUSTOMER-RECORD

 LNK-STATUS.

 move LNK-CUSTOMER-RECORD to FILE-CUSTOMER-RECORD

 delete Customer-File record

 move file-status to lnk-status

 display file-status

 goback.

* find account by customer last name

 ENTRY FIND-CUSTOMER-NAME using BY value LNK-FUNCTION

 by reference LNK-CUSTOMER-RECORD

 LNK-STATUS.

 move “00” to LNK-STATUS

 evaluate LNK-FUNCTION

 when START-READ

 move LNK-CUSTOMER-RECORD TO FILE-CUSTOMER-RECORD

 start Customer-File key is equal FILE-LAST-NAME

 when READ-NEXT

 read Customer-File next

 move FILE-CUSTOMER-RECORD to LNK-CUSTOMER-RECORD

 end-evaluate

 move file-status to LNK-STATUS

 goback.

* find account by customer ID

 ENTRY FIND-CUSTOMER-ID using BY value LNK-FUNCTION

 by reference LNK-CUSTOMER-RECORD

 LNK-STATUS.

 move “00” to LNK-STATUS

 move LNK-CUSTOMER-RECORD to FILE-CUSTOMER-RECORD

00_COBOL2_AM.indb 5000_COBOL2_AM.indb 50 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    51

 read Customer-File key is FILE-CUSTOMER-ID

 of FILE-CUSTOMER-RECORD

 move FILE-CUSTOMER-RECORD to LNK-CUSTOMER-RECORD

 move file-status to LNK-STATUS

 goback.

 ENTRY READ-CUSTOMER-RECORD using by value LNK-FUNCTION

 reference LNK-CUSTOMER-RECORD

 LNK-STATUS

 evaluate LNK-FUNCTION

 when START-READ

 move LNK-CUSTOMER-RECORD TO FILE-CUSTOMER-RECORD

 start CUSTOMER-File key >= FILE-CUSTOMER-ID

 of FILE-CUSTOMER-RECORD

 when READ-NEXT

 read CUSTOMER-FILE next

 end-evaluate

 move FILE-CUSTOMER-RECORD to LNK-CUSTOMER-RECORD

 move file-status to LNK-STATUS

 goback

 .

 ENTRY READ-LAST-CUSTOMER-RECORD using

 by reference LNK-CUSTOMER-RECORD

 LNK-STATUS

 move MAX-ID to FILE-CUSTOMER-ID of FILE-CUSTOMER-RECORD

 start Customer-File key

 < FILE-CUSTOMER-ID OF FILE-CUSTOMER-RECORD

 read Customer-File previous

 move FILE-CUSTOMER-RECORD to LNK-CUSTOMER-RECORD

 move file-status to LNK-STATUS

 goback.

 ENTRY OPEN-ACCOUNT-FILE using by VALUE LNK-FUNCTION

 by reference LNK-STATUS

 evaluate LNK-FUNCTION

 when OPEN-READ

 open input Account-File

 when OPEN-I-O

 open i-o Account-File

 when OPEN-WRITE

 open output Account-File

 when CLOSE-FILE

00_COBOL2_AM.indb 5100_COBOL2_AM.indb 51 4/19/21 5:08 PM4/19/21 5:08 PM

52  An Example Application

 close Account-File

 end-evaluate

 move file-status to LNK-STATUS

 goback.

Opening a File
A file can be opened for input, output, or i-o. It is possible for a file to be opened from more
than one process at a time, but when a process opens a file for output, individual records
are locked while they are being written. This can cause performance issues if there is a
lot of concurrency. Micro Focus FileShare can improve concurrent performance for file
handling, but it is not available for either JVM or .NET compiled programs.

The entry point OPEN-CUSTOMER-FILE takes a function code as an argument to
determine the file open mode and returns the status of the operation. All the function codes
used by ACCOUNT-STORAGE-ACCESS are defined in copybook FUNCTION-CODES.
cpy (see Listing 5-7).

Listing 5-7  The FUNCTION-CODES.cpy copybook

* function codes

 01 LNK-FUNCTION pic x.

 78 OPEN-WRITE value “W”.

 78 OPEN-READ value “R”.

 78 OPEN-I-O value “B”.

 78 CLOSE-FILE value “C”.

 78 START-READ value “S”.

 78 READ-NEXT value “N”.

 78 WRITE-RECORD value “T”.

 78 UPDATE-RECORD value “U”.

Writing a Record
Entry point WRITE-CUSTOMER writes a record into the file. FILE-CUSTOMER-ID is the primary
key and duplicates are not allowed. The WRITE-RECORD function code writes a new record;
UPDATE-RECORD uses the rewrite verb to update an existing record (one with the same
primary key).

Reading a Record
There are three entry points that provide different ways of finding a particular customer
record. Entry FIND-CUSTOMER-ID returns the record that matches a customer ID. There is
more than one data item with the name FILE-CUSTOMER-ID – it is a field in both the customer

00_COBOL2_AM.indb 5200_COBOL2_AM.indb 52 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    53

and account records, so whenever we refer to this data item, we have to explicitly refer-
ence the group it is a member of. For example, the read statement in FIND-CUSTOMER-ID is:

read Customer-File key is FILE-CUSTOMER-ID of FILE-CUSTOMER-RECORD

The next entry point for reading a record is FIND-CUSTOMER-NAME. This enables you to
search for customers by their last name. FILE-LAST-NAME is declared as an alternative key
in the select statement for the customer-file, and allows duplicates, so there could be more
than one matching record.

We start the file on a record matching the last name we are searching for, with function-
code START-READ. This doesn’t return any actual data, although if there are no matching
records the file status code will be “23”. Then we keep calling the function to read records
with function code READ-NEXT. The file-status will be “02” (the next record in sequence
has the same key) if there is a further matching record to read. The file status for the last
matching read will be “00”.

Finally, we have an entry point for READ-LAST-CUSTOMER-RECORD. This reads the record
with the highest value of the primary key. This is useful mainly for determining what value
customer ID to give the next record when we are writing new records. We start reading
records with a primary key less than the maximum possible value, but do a read previous,
effectively reading the file backwards.

File Status Codes
All COBOL file operations return a 2-byte file status code, where “00” is a
successful operation. All ANSI 85- or ANSI 74-compliant COBOL systems have
standardized codes up to “49” and each of the two bytes is an ASCII numeric
character. Micro Focus COBOL also has extended character codes where the
first byte is ASCII “9” and the second byte a binary number; these codes are for
situations that are more specific to the Micro Focus COBOL run-time system
than the standard codes.

Using status codes like this might seem odd to Java programmers where
idiomatic programming makes extensive use of exceptions to signal non-success
conditions, but is very common in COBOL. Non-zero status codes do not always
indicate an “exception”; they can also indicate non-error conditions that can
occur during normal processing (for example record not found). You could think
of them as analogous to http status codes that also signal both errors and non-
error conditions that are of interest to a client.

The Visual COBOL documentation includes a full list of error codes. You can
also find them by searching for “Micro Focus COBOL file status codes” on the web.

00_COBOL2_AM.indb 5300_COBOL2_AM.indb 53 4/19/21 5:08 PM4/19/21 5:08 PM

54  An Example Application

Interest Calculator Program
The Interest-Calculator program is the core piece of business logic we want to reuse as
we modernize our application. It reads one month’s transactions from the transaction file
for a given account id and calculates the total interest payable at the end of the month
based on an initial balance and a daily interest rate.

Interest is calculated based on the balance each day throughout the month and
accumulated to a total figure at the end. The Interest-Calculator also calculates a mini-
mum payment. Although Interest-Calculator is less than 200 lines of code, we’ve split it
into pieces to make it easier to follow.

Interest-Calculator is a good example of the kind of business logic that is easier to write
in COBOL than Java. Financial calculations require high-precision decimal arithmetic to
avoid the rounding errors that occur when converting between decimal and binary fractions.
You can use Java BigDecimal for these sorts of calculations, but the resulting code is not
always easy to follow. Listing 5-8 shows the data declarations for the program.

Listing 5-8  Data division and procedure division header for Interest-Calculator

 program-id. INTEREST-CALCULATOR.

 data division.

 working-storage section.

 copy “FUNCTION-CODES.cpy”.

 copy “PROCEDURE-NAMES.cpy”.

 copy “TRANSACTION-RECORD.cpy” replacing ==(PREFIX)== by ==WS==.

 01 WS-DEBUG PIC 9 VALUE 1.

 01 WS-DAY-INTEREST PIC 9(8)v9(8) comp-3.

 01 WORKING-BALANCE PIC S9(12)V9999 comp-3.

 01 DAILY-BALANCE PIC S9(12)V99 OCCURS 31.

 01 DAILY-BALANCE-INDEX PIC 99 COMP-5.

 01 FUNCTION-CODE PIC X.

 01 INTEREST-PAYABLE PIC S9(12)V9(8) COMP-3.

 01 FILE-STATUS.

 03 FILE-STATUS-BYTE-1 PIC X.

 03 FILE-STATUS-BYTE-2 PIC X.

 01 DAYS-IN-MONTH PIC 99 COMP-5.

 01 DISPLAY-CASH PIC -Z(12)9.99.

 linkage section.

 copy “DATE.cpy” replacing ==(PREFIX)== BY ==LNK-START==.

 01 LNK-DAY-RATE PIC 99v9(8) comp-3.

 01 LNK-ACCOUNT-ID PIC X(4) COMP-X.

 01 LNK-AMOUNT PIC S9(12)V99.

 01 LNK-MINIMUM-PAYMENT PIC S9(12)V99.

00_COBOL2_AM.indb 5400_COBOL2_AM.indb 54 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    55

 01 LNK-INTEREST PIC S9(12)V99.

 01 LNK-STATUS.

 03 LNK-FILE-STATUS-1 PIC X.

 03 LNK-FILE-STATUS-2 PIC X.

 procedure division.

 goback.

Calling the program itself doesn’t execute any code as the procedure division just con-
tains a goback statement; as with ACCOUNT-STORAGE-ACCESS, this gives us a simple
and safe way to load the program. The data division includes copbyooks FUNCTION-
CODES.cpy, PROCEDURE-NAMES.cpy and TRANSACTION-RECORD.cpy, as well as
declaring some data used to carry out the calculations.

Some of the data is declared as comp-3, which is a decimal format (two decimal digits
per byte) that is used for accurate decimal calculations. Binary formats like Java’s float
and double introduce rounding errors when used for decimal calculations, which comp-3
avoids. The precision is set by the picture clause for the data declaration. For example, 01
INTEREST-PAYABLE PIC S9(12)V9(8) COMP-3 declares a signed decimal with 12 places
before the point and 8 digits precision after the decimal point.

Listing 5-9 shows the only other entry point (apart from the procedure division) for
this program, and this contains all the code for actually calculating the monthly interest
for an account.

Listing 5-9  Calculate-Interest entry point

* LNK-DAY-RATE - Daily interest rate

* LNK-START-DATE - Assumed to be first of month.

* LNK-AMOUNT - on entry: Start balance

* on exit: Total balance excluding interest

* LNK-INTEREST Interest payable

 ENTRY CALCULATE-INTEREST using by value LNK-START-DATE

 LNK-ACCOUNT-ID

 by reference LNK-DAY-RATE LNK-AMOUNT

 LNK-INTEREST

 LNK-MINIMUM-PAYMENT

 LNK-STATUS.

* INITIALIZE DATA

 perform DISPLAY-START

 perform varying DAILY-BALANCE-INDEX FROM 1 by 1

 until DAILY-BALANCE-INDEX > 31

 move zero to DAILY-BALANCE(DAILY-BALANCE-INDEX)

00_COBOL2_AM.indb 5500_COBOL2_AM.indb 55 4/19/21 5:08 PM4/19/21 5:08 PM

56  An Example Application

 end-perform

 move LNK-AMOUNT to WORKING-BALANCE

 move “00” to LNK-STATUS

 call GET-DAYS-IN-MONTH using by reference LNK-START-DATE

 DAYS-IN-MONTH

* OPEN TRANSACTION FILE

 move OPEN-READ to FUNCTION-CODE

 call OPEN-TRANSACTION-FILE using by value FUNCTION-CODE

 by reference FILE-STATUS

 if FILE-STATUS <> “00”

 move FILE-STATUS to LNK-STATUS

 goback

 end-if

*> INITIALIZE READ FOR SELECTED ACCOUNT

 move LNK-ACCOUNT-ID to WS-ACCOUNT-ID

 move 0 to WS-TRANSACTION-ID

 move START-READ to FUNCTION-CODE

 call FIND-TRANSACTION-BY-ACCOUNT using by value FUNCTION-CODE

 by reference WS-TRANSACTION-RECORD

 FILE-STATUS

 if FILE-STATUS <> “00”

 move FILE-STATUS to LNK-STATUS

 perform CLOSE-TRANSACTION-FILE

 goback

 end-if

* First loop:

* Read all transactions for month, and

* Add each day’s transactions to the balance for that day.

 move READ-NEXT to FUNCTION-CODE

 move “99” to FILE-STATUS

 perform until FILE-STATUS = “00”

 call FIND-TRANSACTION-BY-ACCOUNT using

 by value FUNCTION-CODE

 by reference WS-TRANSACTION-RECORD

 FILE-STATUS

 if FILE-STATUS <> “00” and FILE-STATUS <> “02”

 exit perform

 end-if

 if WS-MONTH <> LNK-START-MONTH OR WS-YEAR <> LNK-START-YEAR

* IGNORE TRANSACTIONS FOR OTHER MONTHS

 exit perform cycle

00_COBOL2_AM.indb 5600_COBOL2_AM.indb 56 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing the Example    57

 end-if

 perform DISPLAY-TRANSACTION

 move WS-DAY to DAILY-BALANCE-INDEX

 add WS-AMOUNT to DAILY-BALANCE(DAILY-BALANCE-INDEX)

 end-perform

 if FILE-STATUS <> “00”

* Unexpected file status - can’t complete calculation

 move FILE-STATUS to LNK-STATUS

 perform CLOSE-TRANSACTION-FILE

 goback

 end-if

* PERFORM INTEREST CALCULATION

* Second loop: for each day in the month calculate running

* total, and calculate interest for each day.

 add WORKING-BALANCE to DAILY-BALANCE(1)

 move 0 to INTEREST-PAYABLE

 perform varying DAILY-BALANCE-INDEX from 1 by 1

 until DAILY-BALANCE-INDEX > DAYS-IN-MONTH

* calculate the daily interest and add it to the daily balance

 multiply DAILY-BALANCE(DAILY-BALANCE-INDEX) by LNK-DAY-RATE

 giving WS-DAY-INTEREST

 add WS-DAY-INTEREST to DAILY-BALANCE(DAILY-BALANCE-INDEX),

 INTEREST-PAYABLE

 if DAILY-BALANCE-INDEX < DAYS-IN-MONTH

* Balance for next day starts with current day balance

 add DAILY-BALANCE(DAILY-BALANCE-INDEX)

 to DAILY-BALANCE(DAILY-BALANCE-INDEX + 1)

 end-if

 end-perform

 move INTEREST-PAYABLE to LNK-INTEREST

* Last daily balance is now total for month

 move DAILY-BALANCE(DAYS-IN-MONTH) to LNK-AMOUNT

 multiply LNK-AMOUNT by .05 giving LNK-MINIMUM-PAYMENT

 if LNK-MINIMUM-PAYMENT < 5 and WORKING-BALANCE > 5

 move 5 to LNK-MINIMUM-PAYMENT

 else if WORKING-BALANCE < 5

 move WORKING-BALANCE to LNK-MINIMUM-PAYMENT

 end-if

 end-if

 perform DISPLAY-RESULT

 perform CLOSE-TRANSACTION-FILE

 goback.

00_COBOL2_AM.indb 5700_COBOL2_AM.indb 57 4/19/21 5:08 PM4/19/21 5:08 PM

 DISPLAY-TRANSACTION SECTION.

 if WS-DEBUG > 1

 move WS-AMOUNT to DISPLAY-CASH

 display WS-DAY “,” with no advancing

 display DISPLAY-CASH “,” with no advancing

 display WS-DESCRIPTION

 end-if

 .

 DISPLAY-START SECTION.

 if WS-DEBUG > 0

 move LNK-AMOUNT to DISPLAY-CASH

 display “*** Statement for account “ with no advancing

 display LNK-ACCOUNT-ID with no advancing

 display “ Start value “ DISPLAY-CASH

 end-if

 .

 DISPLAY-RESULT SECTION.

 if WS-DEBUG > 1

 add 0 to LNK-INTEREST giving DISPLAY-CASH rounded

 display “account “ lnk-account-id “ Interest “ DISPLAY-CASH

 end-if

 .

 CLOSE-TRANSACTION-FILE SECTION.

 move CLOSE-FILE to FUNCTION-CODE

 CALL OPEN-TRANSACTION-FILE using by value FUNCTION-CODE

 BY reference FILE-STATUS

 .

The CALCULATE-INTEREST entry point calculates the interest day-by-day for the account.
It takes the following parameters:

	■ LNK-START-DATE is an eight-character literal in yyyymmdd format declared in the
linkage section by copy… replacing of DATE.cpy. We have made the simplifying
assumption that the calculator only deals with whole months (for example, balances
don’t run from the third of one month to the second of the next).

	■ LNK-ACCOUNT-ID is the ID of the account to read.

	■ LNK-DAY-RATE is the daily interest rate (for example, an annual interest rate of 25%
is 25/100/365 = 0.00068493).

	■ LNK-AMOUNT is used to input the start balance and return the total balance excluding
interest.

	■ LNK-INTEREST returns the total interest payable at the end of the month.

00_COBOL2_AM.indb 5800_COBOL2_AM.indb 58 4/19/21 5:08 PM4/19/21 5:08 PM

	 Generating Example Data    59

	■ LNK-MINIMUM-PAYMENT returns the minimum payment due at the end of the month –
the greater of 5% of the balance or $5 (unless the balance is $5, in which case
the whole amount).

	■ LNK-STATUS is the file status for the operation. Any value other than “00” indicates a
problem with retrieving data.

The algorithm is very simple. First, get the number of days in the month (by calling the
CALENDAR program – see Listings 4-5 and 4-6 in Chapter 4). Then retrieve all the trans-
actions on the selected account for that month and store the total transactions for each
day in a separate table entry (DAILY-BALANCE in working-storage).

Once we have all the transactions for the month, we can calculate the total interest.
Pass in the balance at the start of the month. Add the start balance to the first day of the
month and calculate the daily interest. Add the balance of the first day to the transactions
for the second day to get the new running total and calculate the interest for that day. We
loop around this until we get to the end of the month, then return the amount, interest, and
minimum payment to the caller.

Listing 5-9 performs some sections not shown in the listing. With the exception of
CLOSE-TRANSACTION-FILE (which closes the transaction.dat file used by the pro-
gram), these sections are used simply to display some data for debugging/troubleshooting.
See the sidebar earlier in this chapter on logging to the console.

However, there isn’t a single consistently used logging system available for procedural
COBOL programs. Micro Focus provides the Consolidated Trace Facility (CTF), but this
is not something you are likely to see in existing legacy applications. Applications that you
are recompiling for JVM have the option of using any of the logging frameworks available
for Java.

Generating Example Data
To be able to use the programs we looked at in the Accessing Files section, we need to
create some data files we can use for testing. The DataBuilder project in the downloaded
examples for this chapter generates customer, account, and transaction records from some
raw data in comma separated value (CSV) files that are supplied in the csvData subdirec-
tory of the DataBuilder project.

The DataBuilder project uses two Visual COBOL classes (AccountsBuilder and
TransactionsBuilder) that read the CSV files and generate COBOL indexed files.
A MainClass processes the command line and invokes the AccountsBuilder and
TransactionsBuilder. There are several other classes in the project for processing the
command line and parsing the CSV files, but we are not going to explain the workings of
the DataBuilder in detail since it is supplied only as a utility to create some sample data.

00_COBOL2_AM.indb 5900_COBOL2_AM.indb 59 4/19/21 5:08 PM4/19/21 5:08 PM

60  An Example Application

Since you have the source code, you are free to examine it and use the debugger if you
want to understand exactly how it works.

The DataBuilder uses the data in two CSV files (you can open these with spreadsheet
applications like Excel or Google Sheets) to create 1,000 customers, 1,000 accounts, and
one month of randomized transactions for each account (approximately 15,000 transac-
tions altogether).

Once you have imported and built the Chapter 5 examples as explained in the section
entitled “Importing the Example Projects,” you generate the customer data, account data,
and one month of transactions as follows:

1.	 Create a COBOL JVM Application launch configuration. Select the DataBuilder
project and click Run, Run Configurations to display the Run Configurations
dialog.

2.	 In the left pane of the Run Configurations dialog, select COBOL JVM
Application and then click the New Configuration icon.

3.	 Name the configuration DataBuilder and then set the Main class as
com.mfcobolbook.databuilder.MainClass (click the Search button next
to the Main class field to pick it from a list).

4.	 Click on the Arguments tab and provide Program Arguments:
-new data-builder-project/csvData 20190701

(where data-builder-project is the full path to the DataBuilder project). The
numeric argument is a date in yyyymmdd format and will be used as the month
for which to generate random transactions.

5.	 Click on the Environment tab and add the following three environment variables
(where chapter-5-examples is the folder where you installed the example files):

	 dd_CUSTOMERFILE

		 = chapter-5-examples/Data/customer.dat

dd_ACCOUNTFILE

		 = chapter-5-examples/Data/account.dat

	 dd_TRANSACTIONFILE

		 = chapter-5-examples/Data/transaction.dat

6.	 Click Run to run the program. You should have account.dat, customer.dat and
transaction.dat files in the data directory specified in the environment variables
in Step 5.

You can optionally add an extra month of transaction data any time after you’ve created
the base data. This isn’t necessary to work through the examples in this book, but is offered
in the event you want to work with more than one month of transaction data:

00_COBOL2_AM.indb 6000_COBOL2_AM.indb 60 4/19/21 5:08 PM4/19/21 5:08 PM

	 Calling COBOL from Java    61

1.	 Duplicate the Data Generator run configuration. Click Run, Run
Configurations, select Account Generator, and then click the duplicate icon.

2.	 Rename the new configuration as Transaction Generator.

3.	 Click on the Arguments tab and change the arguments to:
-add data-generator-project/csvData 20190801

The second argument is the start date (yyyymmdd format).

4.	 Click Run.

The Data Generator will not create two sets of transactions for the same month.
If you have transactions for July 2019, a date parameter of 20190701 will cause
an error. The day part of the date index is always ignored; transactions always
run from the first to the last specified day of the month. The Data Generator
randomizes the number of transactions and the days they appear on for each
customer account.

Calling COBOL from Java
In this section we will use Visual COBOL’s Smart Linkage feature to generate classes that
wrap the linkage section of the ACCOUNT-STORAGE-ACCESS program. This gives you
a simple way of calling a COBOL program directly from Java without writing any wrapper
code yourself. Smart Linkage is a very quick way to get started and is often all you need.

However, writing your own wrapper classes provides a greater flexibility and can provide
an API that is easier to consume from Java. We’ll describe a set of wrapper classes in the
next chapter, “A COBOL-Based REST Service.”

Smart Linkage is a compiler option controlled by a set of directives. When you compile
a program with Smart Linkage the compiler creates a .class file for each data item in the
linkage section. The classes provide getters/setters for the child items in each group
item. These getters and setters also map the COBOL data types to data types that can
be consumed directly from Java. For example, a pic x(80) is converted to a java.lang.
String. The COBOL product documentation contains a full list of the mappings between
COBOL and managed data types.

Smart Linkage also renames items on the fly to fit Java rules and conventions; all hyphens
are removed and names are folded to camel-case. For example, ACCOUNT-NUMBER will appear
as getAccountNumber and setAccountNumber.

In the “Generating Data” section, the DataBuilder classes used the COBOL call verb to
call entry points in ACCOUNT-STORAGE-ACCESS and were able to interpret COBOL
data directly. We are now going to change the compiler directives for the Business Rules

00_COBOL2_AM.indb 6100_COBOL2_AM.indb 61 4/19/21 5:08 PM4/19/21 5:08 PM

62  An Example Application

project and make one small source code change to AccountStorageAccess.cbl so that
we can access it directly from Java code.

To update the directives:

1.	 In the COBOL Explorer, right-click BusinessRules and click Properties.

2.	 Expand Micro Focus and select Build Configuration.

3.	 Under General, scroll down the Settings until you get to Additional Direc-
tives.

4.	 Enter the following into the Additional Directives field:
ilsmartlinkage ilnamespace(com.mfcobolbook.businessrules)

 ilcutprefix(lnk)

5.	 Click Apply and Close.

The compiler creates a JVM class called ACCOUNT-STORAGE-ACCESS when com-
piling the ACCOUNT-STORAGE-ACCESS progam (this is in the program-id header),
but this name contains hyphens, which are not legal in Java identifiers. We are going to
change the program-id header to create a legal Java identifier so we can call it from our
Java client class. To do this:

1.	 Open AccountStorageAccess.cbl and locate the program-id header.

2.	 Add the following clause to the program-id header before the full-stop:
as “AccountStorageAccess”
The complete program-id should now read:
program-id. ACCOUNT-STORAGE-ACCESS as “AccountStorageAccess”.

3.	 Save the changes. Eclipse rebuilds the project.

The BusinessRules project in this chapter is now configured with the following compiler
directives:

	■ ilsmartlinkage turns on smart linkage

	■ ilnamespace(com.mfcobolbook.businessrules) specifies that all the generated .class
files are inside package com.mfcobolbook.businessrules

	■ ilcutprefix(lnk) specifies that the prefix lnk should be removed from data names
when mapping to getters and setters

For the full list of directives that affect Smart Linkage code generation, see the Micro
Focus Visual COBOL documentation.

Listing 5-10 shows a short Java program that reads all the customer records using
the ACCOUNT-STORAGE-ACCESS program. The as “AccountStorageAccess” clause
added to the program-id in the previous set of steps means the class generated is

00_COBOL2_AM.indb 6200_COBOL2_AM.indb 62 4/19/21 5:08 PM4/19/21 5:08 PM

	 Calling COBOL from Java    63

AccountStorageAccess, which is a valid identifier in Java, and this is the name the Java
program uses to call it.

In subsequent chapters, all Java calls to ACCOUNT-STORAGE-ACCESS will go through
Visual COBOL classes, where ACCOUNT-STORAGE-ACCESS is a legal identifier; we
won’t use the as clause again after this chapter. You need to understand these subtleties
when using Smart Linkage as COBOL program names often include hyphens.

Listing 5-10  The Java RecordReader class

package com.mfcobolbook.smartlinkageclient;

import com.mfcobolbook.businessrules.AccountStorageAccess;

import com.mfcobolbook.businessrules.CustomerRecord;

import com.mfcobolbook.businessrules.Status;

public class RecordReader

{

 public static void main(String[] args)

 {

 AccountStorageAccess access = new AccountStorageAccess();

 Status s = new Status();

 access.OPEN_CUSTOMER_FILE(“R”, s);

 if (s.getStatus().equals(“00”))

 {

 CustomerRecord record = new CustomerRecord();

 record.setCustomerId(0);

 access.READ_CUSTOMER_RECORD(“S”, record, s);

 while (s.getStatus().equals(“00”))

 {

 access.READ_CUSTOMER_RECORD(“N”, record, s);

 if (s.getStatus().equals(“00”))

 {

 System.out.println(

 String.format(“Customer Record %d %s %s”,

 record.getCustomerId(),

 record.getFirstName(),

 record.getLastName()));

 }

 }

 access.OPEN_CUSTOMER_FILE(“C”,s);

 }

 else

 {

00_COBOL2_AM.indb 6300_COBOL2_AM.indb 63 4/19/21 5:08 PM4/19/21 5:08 PM

64  An Example Application

 System.out.println(

 		 String.format(“Could not open file, %s”,

 s.getStatus()));

 }

 }

}

The program creates an instance of AccountStorageAccess, which is in package com.
mfcobolbook.businessrules. A procedural COBOL program like AccountStorageAccess
does not have any way of defining a namespace or a package, but Eclipse tooling often
works better when you do. So the ilnamespace directive in the BusinessRules project
defines a package name.

Each entry point in AccountStorageAccess appears as a public instance method. Some
of the parameters to these instance methods are COBOL group items (which do not have
a direct equivalent in Java) and some of them are passed by reference (which you can’t
do in Java). This is why ilsmartlinkage generates classes based on the data definitions in
the linkage section of a program.

For example, every entry point in AccountStorageAccess is passed, by reference, a two-
byte argument for the file status. If you look in the bin/com/mfcobolbook/businessrules
directory of the BusinessRules project, you can see a Status.class file. The compiler has
generated this as follows:

	■ The entry points refer to a parameter called LNK-STATUS. The ilcutprefix(LNK)
directive removes LNK from the name. The naming rules for Smart Linkage then
camel-case the rest of the name (leaving us with Status).

	■ The Status class has getters and setters for FileStatus1 and FileStatus2, as well as
for Status (which is a string created by concatenating FileStatus1 and FileStatus2.
If you look at the definition of LNK-STATUS in Listing 5-4 you can see how these have
been arrived at.

So to invoke the OPEN_CUSTOMER_FILE method, we create a Status object and
pass it as the second argument (the first is a string representing the file open mode). The
called program can set the value of the FileStatus fields on this object, so the caller can
read them afterwards.

To read from the file, we pass in a CustomerRecord object and AccountStorageAccess
sets the results into it so that they can be read back by the caller. The compiler has gener-
ated wrapper classes for all the parameters passed to and from the program, and objects
are returned with the expected values set. Smart Linkage enables us to call procedural
COBOL programs directly from Java without Java needing to understand COBOL data
structures, and without us needing to change the original COBOL code.

However, if we want to use our COBOL code in any kind of multi-threaded environ-
ment (like an application server), we need something extra. The COBOL JVM run-time

00_COBOL2_AM.indb 6400_COBOL2_AM.indb 64 4/19/21 5:08 PM4/19/21 5:08 PM

	 Calling COBOL from Java    65

has to replicate all the semantics of legacy procedural COBOL, and that means that there
is some shared state between each instance of a running COBOL program that is not
directly visible to the programmer.

We can handle this using run units, which is something that we will cover in the next
chapter. We will also create some wrapper classes in Visual COBOL that will provide a
Java friendly API to the procedural code of our example. Although Smart Linkage gives us
a very quick way of reaching COBOL code from Java, it’s a style that may feel a little odd
to the Java programmer. Visual COBOL provides a very natural bridge between Java and
COBOL; you can code call statements to access the COBOL code, but wrap them inside
methods and classes that provide a more natural API to Java.

To import the SmartLinkageClient program:

1.	 Open the Eclipse workspace where you imported the other example code for this
chapter.

2.	 Click File > Import, select General, Existing Projects into Workspace from
the Import wizard, and then click Next.

3.	 In the Select root directory field, enter the folder with the Chapter 5 examples,
select SmartLinkageClient, and then click Finish.

4.	 In the COBOL Explorer, right-click SmartLinkageClient and click Maven, Update
Project. This ensures all the Maven dependencies in the POM file (which include
our BusinesRules project) are added to the Eclipse project as explained in
Chapter 2.

To run the SmartLinkageClient program:

1.	 Click Run > Run Configurations to display the Run Configurations dialog.

2.	 In the left pane of the Run Configurations dialog, select Java Application and
click the New Configuration icon.

3.	 Name the configuration SmartLinkageClient and set the Main class as com.
mfcobolbook.smartlinkageclient.RecordReader (click the Search button
next to the Main class field to pick it from a list).

4.	 Click on the Environment tab and add the following three environment variables
(where chapter-5-examples is the folder where you installed the example files):

	 dd_CUSTOMERFILE

		 = chapter-5-examples/Data/customer.dat

dd_ACCOUNTFILE

		 = chapter-5-examples/Data/account.dat

00_COBOL2_AM.indb 6500_COBOL2_AM.indb 65 4/19/21 5:08 PM4/19/21 5:08 PM

66  An Example Application

dd_TRANSACTIONFILE

	 = chapter-5-examples/Data/transaction.dat

The ACCOUNT-STORAGE-ACCESS program will need these environment vari-
ables to be able to find the data files.

5.	 Click the Run button.

The SmartLinkageClient reads all the customer records and displays them on the
console.

Summary
In this chapter, you have learned about a small suite of COBOL programs that use indexed
files. You then learned how to use Smart Linkage to generate wrappers for the COBOL
data and read some records using a small Java program. In the next chapter, you will learn
how to write a simple interop layer using Visual COBOL and then create a REST service
that uses the business logic defined by our simple example.

00_COBOL2_AM.indb 6600_COBOL2_AM.indb 66 4/19/21 5:08 PM4/19/21 5:08 PM

67

C H A P T E R 6

A COBOL-Based
REST Service

In this chapter, we will use the example COBOL code from the previous chapter as the
back end to a self-contained REST service running on Spring Boot. This chapter covers:

	■ Visual COBOL wrapper classes

	■ Run Units

	■ Spring Boot

The Application
We are going to create a simple REST (Representational State Transfer) service that
enables access to the COBOL data and to the functionality that calculates monthly inter-
est for an account. A REST service provides a set of HTTP endpoints that can be used to
read or write information. This is the first step in making COBOL functionality available as
microservices. We’ll discuss microservices later in the book.

In a REST application, each endpoint is structured to reflect the resources it provides
access to. Requests use HTTP verbs to determine which Create (POST), Read (GET),
Update (PUT), or Delete (DELETE) operation is to be carried out on a resource. For
example, carrying out a GET on http://myserver/service/customer/1 retrieves the customer
record with ID 1.

The application consists of three projects, each of which builds to a jar file. As in the
previous chapters, we’ll use Maven to store our COBOL projects as artifacts in the local
repository so that they can be used from a Maven Java project. We use Spring Boot to

00_COBOL2_AM.indb 6700_COBOL2_AM.indb 67 4/19/21 5:08 PM4/19/21 5:08 PM

68  A COBOL-Based REST Service

create a Web server application; Spring Boot applications are always built using either
Maven or Gradle.

Figure 6-1 shows the main components of the application. Each large box denotes a
separate project that builds into a jar file.

customer-
data

account-
data

transaction-
data

BusinessRules

JAR

CALENDAR

INTEREST-CALCULATOR

1

BusinessInterop

JAR

AccountDataAccess

2

CreditService

JAR

3

Spring Boot

Tomcat
Server

AccountController

CustomerController

TransactionController

StatementController

CustomerDataAccess

TransactionDataAccess

MonthlyInterest

ACCOUNT-STORAGE-ACCESS

Figure 6-1  Components of the REST service

The dependencies run from left to right on the diagram. BusinessRules, labeled as Box
1, is the procedural code covered in the previous chapter. Apart from recompiling to JVM,
the original procedural COBOL code is left untouched.

BusinessInterop, labeled as Box 2, is an interoperation layer written in Visual COBOL.
As well as making the COBOL data accessible from Java (which we used Smart Linkage
for in the previous chapter), it provides an API that translates COBOL semantics and idioms
into ones more easily consumed by Java.

CreditService, labeled as Box 3, is the Spring Boot web application with the controllers
that provide the REST endpoints. The diagram is slightly misleading; Box 3 reflects the
code in the CreditService project, but when packaged into a jar file by Maven, the Spring
Boot Maven plugin ensures that all the dependencies needed to run the application are

00_COBOL2_AM.indb 6800_COBOL2_AM.indb 68 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Application    69

inside one jar file (including those in Box 1 and Box 2 in the diagram). This simplifies the
deploying and running of the application.

The following section shows you how to import and run the application; subsequently,
we’ll spend more time going through the actual details of what’s inside Box 2 and Box 3
in the diagram.

Controllers here are Java classes with methods that define our REST endpoints.
Search for “spring boot getting started restful service” on the web to find a good
tutorial on the spring.io website about creating a REST service.

Running the Application
Download the Chapter 6 examples (for instructions to download the examples, see
“Downloading the Examples” in Chapter 1) and import BusinessRules and BusinessInterop
by following the procedure in the Chapter 5 section entitled “Importing the Example
Projects.” Update the Custom Builder for each of these projects and make sure they are
building correctly; then import the CreditService project. If it doesn’t build, try updating
the Eclipse project from Maven (right-click CreditService and click Maven > Update
on the context menu).

Now you can run the CreditService. First, create a Run Configuration:

1.	 Click Run > Run Configurations.

2.	 Select Java Application and then click the New button.

3.	 Name the configuration CreditService and then specify project CreditService.

4.	 Set the Main class to com.mfcobolbook.creditservice.webservice.
WebserviceApplication.

5.	 Click the Environment tab and then create three new environment variables:
dd_ACCOUNTFILE, dd_CUSTOMERFILE and dd_TRANSACTIONFILE,
respectively. They should point to account.dat, customer.dat and
transaction.dat files, respectively. If you don’t already have these files (they are
not included in the example), go back to the section entitled “Generating Data” in
Chapter 5 and follow the instructions to create them.

6.	 Click Run to start the application and then save the configuration. The
application starts an embedded Tomcat Server, which is listening on port 8080.

You can change the port number by editing src/resources/application.properties.
Change the value of the server.port property.

00_COBOL2_AM.indb 6900_COBOL2_AM.indb 69 4/19/21 5:08 PM4/19/21 5:08 PM

70  A COBOL-Based REST Service

The application displays a lot of console messages as it starts up. If it starts success-
fully, you should see something like this at the end (we’ve omitted the timestamps and other
preamble from the logger output):

Tomcat started on port(s): 8080 (http) Started WebserviceApplication in 3.593

seconds (JVM running for 4.126)

7.	 To check the application is running correctly, open a web browser and try the fol-
lowing URL: http://localhost:8080/service/customer/1
If the application is working correctly, you should see some JSON returned:
{“customerId”:1,”lastName”:”Parrot”,

 “firstName”:”Worthington”}

If you don’t get any output, or you get an HTTP error code, look at the application
console in Eclipse for error messages or exceptions to help you trace the prob-
lem. The most likely problem is that the application can’t find the data files.

For simplicity, we are using http with our examples; otherwise we will have to
create and install SSL certificates. Any production application should always
use https for data transport.

The Interoperation Layer
In this section we’ll look at Box 2 in Figure 6-1. In the previous chapter, we used Smart
Linkage to call our legacy COBOL directly from Java. Smart Linkage gives you a quick
way to map COBOL data in group items to objects that can be used in Java, but it doesn’t
do anything to make procedural COBOL code easy for Java programs to work with. By
writing an interoperation layer in Visual COBOL code you can bridge the gap between
COBOL and Java semantics.

Visual COBOL classes can call COBOL entry points directly and can use the existing
copybooks to access the record structures used in COBOL programs. This enables you to
create a modern API that works more naturally with Java (for example, throwing exceptions
to signal errors instead of requiring clients to check status codes after every invocation).

In the following sections, we will look how the interoperation layer provided by the
BusinessInterop project mediates between procedural COBOL and Java. It provides:

	■ Data access classes to manage file operations

	■ Data transfer classes that provide us with types matching the records in the files

	■ Some exception classes for signaling errors

	■ A class for calculating interest called MonthlyInterest

AbstractBusinessAccess

00_COBOL2_AM.indb 7000_COBOL2_AM.indb 70 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    71

Data Access and Transfer Classes
Figure 6-2 shows the classes for reading and writing to the data files. The
AbstractBusinessAccess class encapsulates some common code for connecting to the
ACCOUNT-STORAGE-ACCESS program (see the previous chapter) and for opening and
closing files. The AccountDataAccess, CustomerDataAccess, and TransactionDataAc-
cess classes provide methods for reading, writing, and searching account, customer, and
transaction records.

Three other classes provide a Java-friendly abstraction for the account, customer, and
transaction records, defined in the copybooks examined in the previous chapter. These
are the AccountDto, CustomerDto, and TransactionDto classes.

AbstractBusinessAccess

TransactionDataAccessCustomerDataAccessAccountDataAccess

Figure 6-2  The data access classes

All three data access programs work in quite similar ways, so we will examine only
AccountDataAccess and AbstractBusinessAccess in depth.

The AbstractBusinessAccess Class
The AbstractBusinessAccess class provides common logic for opening and closing files,
as this is the same for all three subclasses. You might find it helpful to look at this code in
the context of the ACCOUNT-STORAGE-ACCESS program that is part of the Business-
Rules project you imported in the section entitled “Running the Application” previously in
this chapter. The ACCOUNT-STORAGE-ACCESS program was described in Chapter 5.

Opening a File
Listing 6-1 shows the code for the AbstractBusinessAccess class, followed by a short
walk-through of the logic for opening a file. This class provides an API for opening and

The application displays a lot of console messages as it starts up. If it starts success-
fully, you should see something like this at the end (we’ve omitted the timestamps and other
preamble from the logger output):

Tomcat started on port(s): 8080 (http) Started WebserviceApplication in 3.593

seconds (JVM running for 4.126)

7.	 To check the application is running correctly, open a web browser and try the fol-
lowing URL: http://localhost:8080/service/customer/1
If the application is working correctly, you should see some JSON returned:
{“customerId”:1,”lastName”:”Parrot”,

 “firstName”:”Worthington”}

If you don’t get any output, or you get an HTTP error code, look at the application
console in Eclipse for error messages or exceptions to help you trace the prob-
lem. The most likely problem is that the application can’t find the data files.

For simplicity, we are using http with our examples; otherwise we will have to
create and install SSL certificates. Any production application should always
use https for data transport.

The Interoperation Layer
In this section we’ll look at Box 2 in Figure 6-1. In the previous chapter, we used Smart
Linkage to call our legacy COBOL directly from Java. Smart Linkage gives you a quick
way to map COBOL data in group items to objects that can be used in Java, but it doesn’t
do anything to make procedural COBOL code easy for Java programs to work with. By
writing an interoperation layer in Visual COBOL code you can bridge the gap between
COBOL and Java semantics.

Visual COBOL classes can call COBOL entry points directly and can use the existing
copybooks to access the record structures used in COBOL programs. This enables you to
create a modern API that works more naturally with Java (for example, throwing exceptions
to signal errors instead of requiring clients to check status codes after every invocation).

In the following sections, we will look how the interoperation layer provided by the
BusinessInterop project mediates between procedural COBOL and Java. It provides:

	■ Data access classes to manage file operations

	■ Data transfer classes that provide us with types matching the records in the files

	■ Some exception classes for signaling errors

	■ A class for calculating interest called MonthlyInterest

AbstractBusinessAccess

00_COBOL2_AM.indb 7100_COBOL2_AM.indb 71 4/19/21 5:08 PM4/19/21 5:08 PM

72  A COBOL-Based REST Service

closing files that more closely matches the conventions and semantics of Java programs
than the original procedural COBOL code. We’ll call out some of the ways this is done
during the explanations that follow the listing.

Listing 6-1  The AbstractBusinessAccess class

class-id com.mfcobolbook.businessinterop.AbstractBusinessAccess

 public abstract implements type AutoCloseable.

 copy “PROCEDURE-NAMES.cpy”.

 copy “FUNCTION-CODES.cpy”.

 01 fileOpened condition-value.

 method-id open(openMode as type AbstractBusinessAccess+OpenMode).

 call “ACCOUNT-STORAGE-ACCESS”

 declare opcode as string

 declare allowedStatus = “00”

 evaluate openMode

 when type AbstractBusinessAccess+OpenMode::read

 move OPEN-READ to opcode

 when type AbstractBusinessAccess+OpenMode::write

 move OPEN-WRITE to opcode

 move “05” to allowedStatus

 when type AbstractBusinessAccess+OpenMode::rw

 move OPEN-I-O to opcode

 end-evaluate

 invoke openFile(opcode, allowedStatus)

 set fileOpened to true

 end method.

 method-id openFile(opcode as string, allowedStatus as string)

 returning result as string protected.

 copy “FUNCTION-CODES.cpy”.

 01 pPointer procedure-pointer.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusbyte2 pic x.

 if size of opcode <> 1 then

 raise new Exception(“Opcode should be one character”)

 end-if

 if size of allowedStatus <> 2 then

 raise new Exception(“FileStatus should be two characters”)

 end-if

 invoke openEntryPointer(by reference pPointer)

00_COBOL2_AM.indb 7200_COBOL2_AM.indb 72 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    73

 call pPointer using by value opcode

 by reference fileStatus

 if fileStatus <> “00” and fileStatus <> allowedStatus

 raise new Exception(“Unexpected file status “

 & statusToString(fileStatus))

 end-if

 set result to fileStatus

 end method.

 method-id openEntryPointer abstract protected.

 linkage section.

 01 pPointer procedure-pointer.

 procedure divison using by reference pPointer.

 end method.

 method-id close().

 if fileOpened

 invoke openFile(CLOSE-FILE, “00”)

 set fileOpened to false

 end-if

 end method.

method-id statusToString(statusCode as string)

 returning result as string static public.

 01 displayable pic 999.

 if size of statusCode <> 2

 raise new Exception(“Status codes must be two characters”)

 end-if

 if statusCode[0] <> “9”

 set result to statusCode

 else

 move statusCode[1] to displayable

 set result to statusCode[0] & displayable

 end-if

 end method.

 enum-id OpenMode.

 78 #read.

 78 #write.

 78 #rw.

 end enum.

 end class.

00_COBOL2_AM.indb 7300_COBOL2_AM.indb 73 4/19/21 5:08 PM4/19/21 5:08 PM

74  A COBOL-Based REST Service

The class-id header includes the abstract keyword. Just as in Java, abstract classes
cannot be instantiated. This class also implements the Java AutoCloseable interface. This
interface enables our data access classes to be used with the Java try-with-resources
statement that closes a resource at the end of a code block.

The class has a working-storage section, which includes two copybooks and one
member variable, fileOpened. The copybooks declare constants but don’t allocate any
member variables. PROCEDURE-NAMES.cpy declares a literal constant for each entry
point defined in the ACCOUNT-STORAGE-ACCESS program; FUNCTION-CODES.cpy
declares single-character function codes used by those entry points. Using constants for
these values enables the compiler to flag errors that would otherwise not be picked up
until runtime.

The open() method opens a file. The file that is opened is determined by the sub-
class of the instance in use; this is an abstract class, so there are never any instances
of AbstractAccountAccess and the method will always be executed as an instance of
AccountDataAccess, CustomDataAccess, or TransactionDataAccess. This is the sequence
of events to open a file:

1.	 A client invokes the open() method with an openMode argument.

The OpenMode enumeration is defined inside the AbstractBusinessAccess
class just before the end class header (you can see it at the bottom of the list-
ing). It provides a type-safe way for the client of the interoperation layer to specify
that the file should be opened for read, write, or read/write.

2.	 The call “ACCOUNT-STORAGE-ACCESS” statement loads the ACCOUNT-STORAGE-
ACCESS program into memory and executes its procedure division.

The procedure division of ACCOUNT-STORAGE-ACCESS does nothing, so
there are no side effects to calling it every time we open a file. However, the first
time the call is executed, it loads ACCOUNT-STORAGE-ACCESS, which also
makes all its entry points known to the COBOL RTS. Without this step, the first
call to any of those entry points would cause a COBOL RTS 114 error (program
not found).

3.	 The next two statements declare the opcode and allowedStatus variables; these
are used later in the method.

4.	 The evaluate statement converts the OpenMode enumeration into a singe-character
opcode as expected by the ACCOUNT-STORAGE-ACCESS program.

This is an example of converting from a Java semantic (use an enumeration to
specify a choice) to the one used by the original COBOL code.

00_COBOL2_AM.indb 7400_COBOL2_AM.indb 74 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    75

5.	 The openFile() method is invoked with the parameters defined by the preceding
body of this method.

6.	 The member variable fileOpened is set to true.

If the openFile() method fails for any reason, it throws an exception and this last
statement does not get executed.

The openFile() method contains the code to open or close a file (the same entry point
in ACCOUNT-STORAGE-ACCESS does both, depending on the value of the opcode).
This is the sequence of events for openFile():

1.	 The first few lines of the method sanity-check the arguments passed in; they
are both strings and this code checks that at least they are the expected size. It
throws exceptions if they are not.

2.	 The method openEntryPointer() is invoked.

This is declared as an abstract method in this class; classes
AccountDataAccess, CustomerDataAccess, and TransactionDataAccess each
define an implementation of this method that provides a procedure-pointer for the
entry point in ACCOUNT-STORAGE-ACCESS that opens account, customer,
or transaction files, respectively.

3.	 The procedure-pointer is called to open the file.

4.	 The fileStatus is checked for an acceptable result; an exception is thrown if it
appears there was an error

A file status of “00” indicates success. But not all non-zero codes indicate
failure. For example, a code of “05” (optional file not present) is returned when
a non-existent file is opened for write, but it isn’t an error because the file will be
created as a result of being opened for write.

The close() method is required for this class’ implementation of the AutoCloseable
interface and closes a file (if one has been opened). This is another example of the
InteroperationLayer providing a Java semantic, which doesn’t exist in the original COBOL
code, to clients of the API.

The last method is statusToString(), which converts the two-byte COBOL file-status
into a string for inclusion in exception messages. In the next section, we’ll look at the code
in the AccountDataAccess class, which actually reads and writes records.

00_COBOL2_AM.indb 7500_COBOL2_AM.indb 75 4/19/21 5:08 PM4/19/21 5:08 PM

76  A COBOL-Based REST Service

Procedure-pointers
A procedure-pointer is a pointer that points to a piece of code; calling the proce-
dure-pointer executes the code. Java uses callback mechanisms like interfaces,
anonymous classes, and anonymous functions for late-binding to code rather
than procedure-pointers.

The AccountStorageAccess Class
In this section, we’ll take a look at how the AccountStorageAccess class provides a Java-
friendly API to the business logic defined in our procedural COBOL program. Rather than
listing the entire program in one go, it’s split it into smaller pieces so that the explanations
aren’t too far from the code.

Setting a Procedure-Pointer
Listing 6-2 shows just the beginning of the class, together with the first method,
openEntryPointer().

Listing 6-2   The AccountDataAccess class

class-id com.mfcobolbook.businessinterop.AccountDataAccess

 inherits AbstractBusinessAccess public.

 working-storage section.

 copy “PROCEDURE-NAMES.cpy”.

 copy “FUNCTION-CODES.cpy”.

 method-id openEntryPointer override protected.

 linkage section.

 01 pPointer procedure-pointer.

 procedure divison using by reference pPointer.

 set pPointer to entry OPEN-ACCOUNT-FILE

 end method.

This class inherits from AbstractBusinessAccess, so it must implement the abstract
method openEntryPointer() declared in that class. It could appear anywhere in the class,
but we’ve put it at the top. There are three entry points in the procedural ACCOUNT-
STORAGE-ACCESS program for opening each of the three files the program manages
(accounts, customers, and transactions).

00_COBOL2_AM.indb 7600_COBOL2_AM.indb 76 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    77

The AbstractBusinessAccess class has all the code to open files, but it needs to call
the appropriate entry point for the type of the file it is opening. We are using COBOL
procedure-pointers to call the appropriate entry point. Each of our concrete data access
classes returns a procedure-pointer set to the appropriate entrypointer.

The syntax of the openEntryPointer() method looks a little different to the other ones in
this book; the arguments and return values aren’t defined as part of the method-id header.
Instead, there is a linkage section declaring the arguments and they are named in the
procedure division header. This is an older flavor of object-oriented COBOL syntax;
we’ve used it here because the newer version doesn’t work with arguments that don’t have
direct equivalents in the Java type system (or don’t map to Java types in the way that some
COBOL types are mapped automatically to Java Strings or numerics).

Adding, Updating and Deleting Records
The addAccount(), updateAccount(), and deleteAccount() methods enable a client to add,
update, or delete records. Listing 6-3 shows the code for these three methods. There
are similar methods in the CustomerDataAccess and TransactionDataAccess classes for
updating customer and transaction records. Before invoking any of these methods, the file
must be opened for write or read/write.

Listing 6-3  Methods for updating the account file

 method-id addAccount (account as type AccountDto)

 returning accountId as binary-long.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by LS.

 01 functionCode pic x.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusByte1 pic x.

 declare nextId as binary-long

 declare lastAccount = self::getLastAccount()

 if lastAccount = null

 set nextId = 1

 else

 set nextId = lastAccount::accountId + 1

 end-if

 move WRITE-RECORD to functioncode

 invoke account::getAsAccountRecord(LS-ACCOUNT)

 move nextId to LS-ACCOUNT-ID

 call WRITE-ACCOUNT-RECORD using by value functionCode

 by reference LS-ACCOUNT

00_COBOL2_AM.indb 7700_COBOL2_AM.indb 77 4/19/21 5:08 PM4/19/21 5:08 PM

78  A COBOL-Based REST Service

 fileStatus

 if fileStatus <> “00” and fileStatus <> “02”

 raise new RecordWriteException(

 “Couldn’t add new account record”)

 end-if

 set accountId to nextId

 end method.

 method-id updateAccount (account as type AccountDto)

 returning success as condition-value.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by LS.

 01 functionCode pic x.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusByte1 pic x.

 move UPDATE-RECORD to functioncode

 invoke account::getAsAccountRecord(LS-ACCOUNT)

 call WRITE-ACCOUNT-RECORD using by value functionCode

 by reference LS-ACCOUNT

 fileStatus

 if fileStatus <> “00” and

 fileStatus <> “02” and

 fileStatus <> “23”

 raise new RecordWriteException(

 “Couldn’t update record”)

 end-if

 set success to fileStatus <> “23”

 end method.

 method-id deleteAccount (accountId as binary-long)

 returning success as condition-value.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by LS.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusByte1 pic x.

 move accountId to LS-account-ID

 call DELETE-ACCOUNT-RECORD USING by reference LS-ACCOUNT

 fileStatus

 set success to (fileStatus = “00”)

 end method.

All three of these methods start with a copy statement that declares a COBOL group
item for the account record, called LS-ACCOUNT. This is part of the local storage for the
method.

00_COBOL2_AM.indb 7800_COBOL2_AM.indb 78 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    79

The addAccount() method takes a single parameter, an instance of AccountDto.
AccountDto is a wrapper for the COBOL account record defined in the ACCOUNT-
RECORD.cpy copybook that was described in the Chapter 5 section entitled “Storing
Data in Indexed Files.” The AccountDto class provides a property corresponding to each
field in the record and some helper methods.

The addAccount() method has been designed to always add a new account record with
an account ID 1 greater than the last account ID in the file (like a database table where
the primary index is set to autoincrement). It goes through the following steps to add a
new account record:

1.	 Invokes the getLastAccount() method to find the record with the highest num-
bered account ID. If there are no records, the account ID is set to 1; otherwise it
is set to the last account ID + 1.

2.	 Populates the LS-ACCOUNT record with the data passed in in the AccountDto
object, using the getAsAccountRecord() helper method.

3.	 Calls the WRITE-ACCOUNT-RECORD entry-point in the ACCOUNT-STORAGE-
ACCESS program to add the new record.

4.	 Checks the file status. A status of “02” indicates an allowed duplicate alternate
key. The customer ID is the alternate key; duplicates are allowed as the system
allows for a customer to have more than one account. A status of “00” indicates
success. Any other status indicates that the operation has failed, which throws
an exception. The caller doesn’t need to check status codes; errors are signaled
through exceptions as is usual for a Java API.

5.	 The method returns the ID of the new account to the caller.

The updateAccount() method is similar, but this returns a success or failure Boolean. This is
because attempting to update an account that does not already exist will fail, but depending
on the semantics of your system, it might not count as an error. Any status that isn’t OK,
any duplicate alternate key, or any record not found still throws an exception.

The deleteAccount() method also returns a condition-value (Boolean) to indicate suc-
cess. Again, it isn’t necessarily an error condition if you can’t delete a record that doesn’t
exist.

Reading and Finding Records
In this section, we will look at the methods that enable us to search and read the account
file. All our files have been set up for dynamic access. This gives us the ability to read a

00_COBOL2_AM.indb 7900_COBOL2_AM.indb 79 4/19/21 5:08 PM4/19/21 5:08 PM

80  A COBOL-Based REST Service

random record but also to read a group of records sequentially. So we can both read the
record for account ID 13 but also read all the records in order starting from any given id.

This flexibility does mean that the logic for reading files is a little more complex than
the logic for writing them. Listing 6-4 shows the section of code in our original procedural
program to read a record,

Listing 6-4  Procedural code to read an account record

 ENTRY READ-ACCOUNT-RECORD using by value LNK-FUNCTION

 by reference LNK-ACCOUNT LNK-STATUS

 evaluate LNK-FUNCTION

 when START-READ

 move LNK-ACCOUNT TO FILE-ACCOUNT

 start ACCOUNT-File key >= FILE-ACCOUNT-ID

 of FILE-ACCOUNT

 when READ-NEXT

 read ACCOUNT-File next

 end-evaluate

 move FILE-ACCOUNT to LNK-ACCOUNT

 move file-status to LNK-STATUS

 goback

 .

This entry point enables you to either start or read... next from the file. The start verb
positions a cursor at the first record either equal to or greater than the ID passed in with the
LNK-ACCOUNT argument. The read verb reads the record and moves the cursor. If you want
to continue reading records in account ID order, keep repeating the READ-NEXT operation.

The code has been designed to allow all the records to be read even if you don’t know
the first account ID; just pass in a value of 0 for the ID and the start will place the cursor at
the first record in the file (assuming IDs are always greater than zero). However, that does
mean if you want a specific record (and no other record), you need to check the id of the
first record returned. For example, if you attempt to read account ID 7 and there is no such
account, you will get returned the first record with an ID greater than 7.

The job of our interoperation layer is to turn this very COBOL-centric logic into some-
thing that looks like the API a Java programmer might expect. Listing 6-5 shows the code
for retrieving accounts by ID.

Listing 6-5  Interoperation code for reading accounts

 method-id getAccount (accountId as binary-long)

 returning result as type AccountDto.

 perform varying result through getAccount(accountId, false)

 goback

 end-perform

00_COBOL2_AM.indb 8000_COBOL2_AM.indb 80 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    81

 end method.

 iterator-id getAccounts () yielding result as type AccountDto.

 perform varying result through getAccount(1, true)

 goback

 end-perform

 end iterator.

 iterator-id getAccount (accountId as binary-long,

 getall as condition-value)

 yielding result as type AccountDto

 protected.	

 01 done condition-value.

 01 fileStarted condition-value.

 01 opcode string.

 01 fileStatus string.

 perform until done

 if not fileStarted

 move START-READ to opcode

 invoke readFileById(accountId, opcode, getAll,

 by reference result)

 set fileStarted to true

 end-if

 move READ-NEXT to opcode

 set fileStatus to readFileById(accountId, opcode, getAll,

 by reference result)

 if result = null

 stop iterator

 else

 if fileStatus = “00” and getall = false

 set done to true

 end-if

 goback

 end-if

 end-perform

 end iterator.

 method-id readFileById (#id as binary-long, opcode as string,

 getAll as condition-value,

 by reference dto as type AccountDto)

 returning result as string

 protected.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by LS.

 01 fileStatus.

 03 statusByte1 pic x.

00_COBOL2_AM.indb 8100_COBOL2_AM.indb 81 4/19/21 5:08 PM4/19/21 5:08 PM

82  A COBOL-Based REST Service

 03 statusByte1 pic x.

 01 accountType binary-char.

 move #id to LS-ACCOUNT-ID

 call READ-ACCOUNT-RECORD using by value opCode

 by reference LS-ACCOUNT

 fileStatus

 set result to fileStatus

 if fileStatus = “23” or fileStatus = “10” or

 (LS-ACCOUNT-ID <> #id and not getAll)

 set dto to null

 else

 if fileStatus = “00” or fileStatus = “02”

 move LS-TYPE to accountType

 set dto to new AccountDto(LS-ACCOUNT-ID, LS-CUSTOMER-ID,

 LS-BALANCE, accountType,

 LS-CREDIT-LIMIT)

 else

 raise new FileReadException(“Could not read file “

 & super::statusToString(fileStatus))

 end-if

 end-if

 end method.

 method-id getLastAccount () returning result as type AccountDto.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by LS.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusByte1 pic x.

 call READ-LAST-ACCOUNT-RECORD using by reference LS-ACCOUNT

 fileStatus

 evaluate fileStatus

 when “00”

 declare accType as binary-char = LS-TYPE

 set result to new AccountDto(LS-ACCOUNT-ID,

 LS-CUSTOMER-ID

 LS-BALANCE,

 accType,

 LS-CREDIT-LIMIT)

 when “46”

 set result to null

 when other

 declare fs as string

 set fs to fileStatus

 raise new FileReadException(fs)

00_COBOL2_AM.indb 8200_COBOL2_AM.indb 82 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Interoperation Layer    83

 end-evaluate

 end method.

The getAccount() method retrieves one specific account by account ID. The
getAccounts() iterator returns a java.lang.Iterable<AccountDto> that enables a client to
iterate over all the account records using a for loop or by using the forEach() method of
Iterable<?>. We’ll explain Visual COBOL iterators in more detail later in this chapter, but
first we’ll look at the code for retrieving records.

The first getAccount() method takes a single ID as the argument and returns either the
matching account or null if no record is found. It returns the first object returned by the
getAccount() iterator (by doing a perform varying but returning as soon as the first record
is found). This iterator, together with a helper method called readRecordById(), wraps up
all the logic to start the file at a particular location and then retrieves a record, together
with raising exceptions for any unexpected file status codes.

The getAccount() iterator consists of a perform loop that is only complete when the
done flag is set to true. Because it is defined as an iterator, it returns the value in result
each time it executes the goback statement at the bottom of the loop. The first time this
code is executed, it calls the file-handling logic in the procedural program to start the file
at the specified index; it then reads the record found there. Iterators are explained in more
detail in the next section, but in effect, this code returns the next record in the sequence
each time it is executed and maintains its local state between invocations. When it hits
the stop iterator statement, there are no more records to return.

The readByFileId() method has the logic that calls the procedural program and trans-
lates unexpected file status values into an exception. If the getAll flag is set to false, it will
return a record only if it matches the ID originally requested. This is how we differentiate
between fetching all the records from a particular index and fetching only the exact record
at an index. If we ask for account ID 5 and there is no record with that ID, but there is one
with ID 7, it will be retrieved by the original logic, although the ID in the record returned
will not be the same as the one originally requested and the file status will be “02” rather
than “00”.

The getAccounts() iterator retrieves all the records in the file by starting from account
ID 1 and calling the getAccount() iterator with the getAll() flag set to true.

Iterators
Iterators in Visual COBOL always return an Iterable<?> object, with the generic type
defined by the returning clause of the iterator. Listing 6-6 shows an example class with
an iterator that is called by the main method. The iterator has a returning clause of binary-
long, so it returns an Iterable<Integer> (binary-long is equivalent to the Java Integer type).

00_COBOL2_AM.indb 8300_COBOL2_AM.indb 83 4/19/21 5:08 PM4/19/21 5:08 PM

84  A COBOL-Based REST Service

The iterator uses perform varying to read an array of Fibonacci numbers, but it returns
only the even values. The getEven() iterator returns the contents of result each time it
hits the goback statement. Its position in the perform varying statement is maintained
between invocations.

Listing 6-6  Simple iterator program

 class-id com.mfcobolbook.examples.Iterators public.

 01 fibonacciArray binary-long occurs any value

 table of binary-long (1 2 3 5 8 13 21 34 55 89 144 233

 377).

 method-id main (arg as string occurs any) static.

 declare ic as type Iterators = new Iterators()

 perform varying evenNumber as binary-long through ic::getEven()

 display evenNumber

 end-perform

 end method.

 iterator-id getEven yielding result as binary-long.

 perform varying i as binary-long through fibonacciArray

 if i b-and 1 = 0 *> Binary AND i with 1.

		 *> Result is zero for even values of i

 set result to i

 goback

 end-if

 end-perform

 end iterator.

 end class.

What is really happening here? The compiler generates some hidden code to make
all this work so elegantly. It constructs an implementation of Iterable<Integer> that will
be instantiated and returned from the method. Iterable is a Java interface that provides
forEach() and iterator() methods.

The iterator() method returns a java.lang.Iterator<Integer> (in this case) and provides
methods hasNext() and next(), which enable a client to retrieve all the elements from a list,
or array, or whatever data structure backs the iterator. Visual COBOL takes the code in the
iterator method, adds some code to maintain state between invocations, and puts it into
the Iterable it has generated, which can now support the hasNext(), next(), and forEach()
methods of the Iterable<?> and Iterator<?> interfaces.

This enables a client to iterate through all the accounts (using a for loop) or use the
forEach() method to apply an action to each element.

00_COBOL2_AM.indb 8400_COBOL2_AM.indb 84 4/19/21 5:08 PM4/19/21 5:08 PM

	 The MonthlyInterest Class    85

The iterator feature in Visual COBOL is similar to the yield keyword that simplifies
writing iterators in C#. Visual COBOL adopted the feature as part of the implementation
of .NET; it is available in JVM to maintain language parity between Visual COBOL .NET
and Visual COBOL JVM.

Visual COBOL iterators work well with Java because in COBOL JVM, they compile to
interfaces that are part of the java.lang namespace, so they support Java language con-
structs like the for loop and the forEach() method introduced in Java 8. Listing 6-7 shows
a Java method that uses forEach() and a lambda to display all account records using the
iterator methods in the AccountDataAccess class.

Listing 6-7  Using foreach to display all account records

public void forEachAllAccounts() {

	 try (AccountDataAccess cda = new AccountDataAccess()) {

		 cda.open(AbstractBusinessAccess .OpenMode.read);

		 cda.getAccounts().forEach((dto) -> System.out.println(

				 String.format(“%d %d %s”,

						 dto.getAccountId(),

						 dto.getCustomerId(),

						 dto.getCreditLimit()).toString())) ;

	 }

}

The MonthlyInterest Class
Box 2 in Figure 6-1 showed a MonthlyInterest class as well as the three classes for
data access. As shown in Listing 6-8, MonthlyInterest calls the CALCULATE-INTEREST
program examined in the previous chapter to work out how much interest is owed on a
particular account in a given month.

Listing 6-8  The MonthlyInterest class

$set ilusing(java.time)

$set ilusing(com.microfocus.cobol.runtimeservices)

 class-id com.mfcobolbook.businessinterop.MonthlyInterest public.

 copy “PROCEDURE-NAMES.cpy”.

 01 valuesCalculated condition-value.

 01 dayRate decimal.

 01 startingAmount decimal.

 01 endingAmount decimal.

 01 startDate type LocalDate.

 01 accountId binary-long.

 01 minimumPayment decimal.

00_COBOL2_AM.indb 8500_COBOL2_AM.indb 85 4/19/21 5:08 PM4/19/21 5:08 PM

86  A COBOL-Based REST Service

 01 interest decimal.

 01 initialized condition-value.

 01 runUnit type RunUnit.

 method-id init (dayRate as decimal, startingAmount as decimal,

 startDate as type LocalDate,

 accountId as binary-long).

 set self::dayRate to dayRate

 set self::startingAmount to startingAmount

 set self::startDate to startDate

 set self::accountId to accountId

 set initialized to true

 end method.

 method-id close.

 end method.

 method-id calculate().

 copy “DATE.cpy” replacing ==(PREFIX)== BY ==START==.

 01 tempResult PIC S9(12)V99.

 01 tempDayRate PIC 99v9(8) comp-3.

 01 tempInterestPayment PIC S9(12)V99.

 01 tempMinimumPayment PIC S9(12)V99.

 01 fileStatus.

 03 statusByte1 pic x.

 03 statusByte2 pic x.

 if not initialized

 raise new UninitialisedObjectException(“No data provided”)

 end-if

 if not valuesCalculated

 call “INTEREST-CALCULATOR”

 set START-YEAR of START-DATE to startDate::getYear()

 set START-MONTH of START-DATE to startDate::getMonthValue()

 set START-DAY of START-DATE to startDate::getDayOfMonth()

 move startingAmount to tempResult

 move dayRate to tempDayRate

 call CALCULATE-INTEREST using by value START-DATE

 accountid

 by reference tempDayRate

 tempResult

 tempInterestPayment

 tempMinimumPayment

 fileStatus

 if fileStatus <> “00”

 if fileStatus = “23”

 raise new RecordNotFoundException(

00_COBOL2_AM.indb 8600_COBOL2_AM.indb 86 4/19/21 5:08 PM4/19/21 5:08 PM

	 The MonthlyInterest Class    87

 “No transactions for account “ & accountId)

 else

 raise new Exception(“Could not calculate result”)

 end-if

 end-if

 set endingAmount to tempResult

 set interest to tempInterestPayment

 set minimumPayment to tempMinimumPayment

 set valuesCalculated to true

 end-if

 end method.

 method-id getMinimumPayment() returning result as decimal.

 if not valuesCalculated

 invoke calculate()

 end-if

 set result to minimumPayment

 end method.

 method-id getEndingAmount() returning result as decimal.

 if not valuesCalculated

 invoke calculate()

 end-if

 set result to endingAmount

 end method.

 method-id getInterestPayment() returning result as decimal.

 if not valuesCalculated

 invoke calculate()

 end-if

 set result to interest

 end method.

 method-id getStatementDto() returning result as type StatementDto.

 if not valuesCalculated

 invoke calculate()

 end-if

 set result to new StatementDto (accountId, startDate,

 minimumPayment,

 endingAmount, interest)

 end method.

 end class.

00_COBOL2_AM.indb 8700_COBOL2_AM.indb 87 4/19/21 5:08 PM4/19/21 5:08 PM

88  A COBOL-Based REST Service

To use this class, initialize it with the daily interest rate, initial balance, start date, and
account ID. All the result values are available as individual properties or in the form of a
StatementDto object. The calculation is carried out the first time any of the accessors is
called.

You might be wondering why this class doesn’t take all the values it requires in the
constructor rather than requiring a separate init() method. It will become clearer when
we look at Run Units later in this chapter.

Creating a REST Interface
In this section, we will look at Box 3 in Figure 6-1, the REST layer. So far in this chapter
we’ve looked at creating an interoperation layer that turns the COBOL idioms in our original
procedural program into an API that makes sense to a Java programmer. Now we are going
to use Java and Spring Boot to create a small web application that enables us to read and
write data and calculate monthly interest.

What Is Spring Boot?
Spring Boot is described as an “opinionated view of the Spring platform and third-party
libraries.” Spring Boot makes it easier to create Java applications by providing curated col-
lections of dependencies for popular technologies and libraries and by providing sensible
defaults for many of the things you might otherwise have to choose for yourself. It builds
on top of the popular Spring Framework, which has largely supplanted J2EE as a frame-
work for building complex applications. Spring and Spring Boot (https://spring.io/projects/
spring-boot) are both open source software, licensed under the Apache 2.0 license, and
can be used without license fees.

The REST controller introduced later in this chapter is based on the Spring Boot example
for Building a RESTful Web Service (https://spring.io/guides/gs/rest-service/). You can
generate the template for a Spring Boot application using the Spring Initializr (https://start.
spring.io). Tell Initializr what kind of dependencies your application needs and it will create
the outline of a Maven or Gradle project that includes all those dependencies.

The “opinionated view” mentioned in the first paragraph of this section enables you to
reduce much of the boiler-plate code often associated with Java applications and enables
you to create applications that are easy to deploy and configure.

By default, all Spring Boot web applications build into a single jar that includes all
dependencies including an embedded Tomcat Server. “Deployment” means copying the
jar file to an environment that can run Java and starting it up. Within a few seconds, your
application is running and able to respond to http requests.

00_COBOL2_AM.indb 8800_COBOL2_AM.indb 88 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating a REST Interface    89

The WebServiceApplication Class
Our web service application consists of a Spring Boot Application class and the
AccountController, CustomerController, StatementController, and TransactionController
classes. There are also three classes used for serializing accounts, customers, and trans-
actions (these are in the com.mfcobolbook.creditservice.forms namespace).

Listing 6-9 shows the WebServiceApplication. This contains a main method that is the
entry point to start the entire application. It is annotated with @SpringBootApplication, which
marks it as a Spring Boot Application so that when it is started with the SpringApplication.
run() method, Spring wires up the configuration and then carries out any dependency
injection needed to make the application run.

Listing 6-9   The WebServiceApplication

package com.mfcobolbook.creditservice.webservice;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class WebserviceApplication {

	 public static void main(String[] args) {

		 SpringApplication.run(WebserviceApplication.class, args);

	 }

The AccountController Class
Each controller class provides a set of endpoints that enable callers to read, write, or delete
records (or calculate monthly interest in the case of the StatementController). Listing 6-10
shows the AccountController class.

Listing 6-10  The AccountController class

package com.mfcobolbook.creditservice.webservice;

@RequestMapping(“/service/account”)

@RestController

public class AccountController {

 @GetMapping

 public ArrayWrapper<AccountForm> accounts() {

 List<AccountForm> accountList = new ArrayList<>();

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

00_COBOL2_AM.indb 8900_COBOL2_AM.indb 89 4/19/21 5:08 PM4/19/21 5:08 PM

90  A COBOL-Based REST Service

 try (AccountDataAccess accessor = (AccountDataAccess) ru

 .GetInstance(AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.read);

 for (AccountDto next : accessor.getAccounts()) {

 accountList.add(new AccountForm(next));

 }

 }

 }

 return new ArrayWrapper<>(accountList);

 }

 @GetMapping(value = “/{id}”)

 public AccountForm getAccount(@PathVariable(“id”) int id)

 throws ResourceNotFoundException {

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

 try (AccountDataAccess accessor = (AccountDataAccess) ru

 .GetInstance(AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.read);

 AccountDto dto = accessor.getAccount(id);

 if (dto != null) {

 return new AccountForm(dto);

 } else {

 throw new ResourceNotFoundException(

 String.format(“Could not find record %d”, id));

 }

 }

 }

 }

 @PostMapping

 public ResponseEntity<AccountForm> addAccount(

 @RequestBody AccountForm account) {

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

 try (AccountDataAccess accessor = (AccountDataAccess) ru

 .GetInstance(AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.rw);

 AccountDto dto = account.createAccountDto();

 int id = accessor.addAccount(dto);

 account.setId(id);

 return ResponseEntity.ok(account);

 }

 }

 }

00_COBOL2_AM.indb 9000_COBOL2_AM.indb 90 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating a REST Interface    91

 @DeleteMapping(value = “/{id}”)

 public ResponseEntity<?> deleteAccount(@PathVariable(“id”)

 int id)

 throws ResourceNotFoundException {

 HttpStatus status = null;

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

 try (AccountDataAccess accessor = (AccountDataAccess) ru

 .GetInstance(AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.rw);

 status = accessor.deleteAccount(id)

 ? HttpStatus.NO_CONTENT

 : HttpStatus.NOT_FOUND;

 }

 }

 return new ResponseEntity<String>(status);

 }

 @PutMapping

 public ResponseEntity<String> updateAccount(

 @RequestBody AccountForm account) {

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

 try (AccountDataAccess accessor =

 (AccountDataAccess) ru.GetInstance(

 AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.rw);

 AccountDto dto = account.createAccountDto();

 HttpStatus status = accessor.updateAccount(dto)

 ? HttpStatus.NO_CONTENT

 : HttpStatus.NOT_FOUND;

 return new ResponseEntity<>(status);

 }

 }

 }

}

The imports are omitted to make the listing a little shorter. The class is annotated with
@RestController, which is a Spring framework annotation that marks this class as a REST
controller. It is also annotated with @RequestMapping(“/service/account”), which indicates
that all the endpoints defined in this class start with the path /service/account.

The first method, accounts(), returns an array of all the account records. It’s annotated
with @GetMapping, so to return all the accounts, a client would make an HTTP GET request
to http://hostname/service/account. In a real-world application, you would make this a

00_COBOL2_AM.indb 9100_COBOL2_AM.indb 91 4/19/21 5:08 PM4/19/21 5:08 PM

92  A COBOL-Based REST Service

pageable request to limit the number of records returned from a single request. The only
reason this hasn’t been done here is to keep things as simple as possible.

The body of the method creates a ListArray to hold the results and then uses the Java
try... with resources statement to construct a RunUnit<AccountDataAccess>. A Run Unit
is an object supplied by the Visual COBOL run-time to safely wrap procedural COBOL
programs so that they can be called in multi-threaded environments.

It’s constructed in a try… with resources so that it will always get closed at the end of
the block; otherwise the application will have a memory leak. The RunUnit.GetInstance()
method constructs an AccountDataAccess object. The AccountDataAccess object itself
calls procedural COBOL, which is why a Run Unit is needed. The sidebar on Visual CO-
BOL Run Units provides some extra information.

The logic of the accounts() method is very simple:

1.	 Create a Run Unit in a try... with resources.

2.	 Get an instance of AccountDataAccess from the Run Unit in a try… with re-
sources (this ensures the underlying file resource is closed when we’ve finished
reading).

3.	 Open the accessor for Read.

4.	 Iterate through all the accounts.

5.	 Create an AccountForm for each AccountDto (the AccountForm is our serializa-
tion object) and then store it in the ArrayList.

6.	 Return the list of accounts.

There’s one small wrinkle: rather than returning the array itself, it’s returned wrapped
inside another object. This is to avoid a Web vulnerability known as JSON hjjacking. A
detailed discussion of this is not within the scope of this book, but it’s a side effect of the
fact that arrays in JavaScript are executable. You can find out more by searching for JSON
hijacking on the web.

The result of all the Spring magic encapsulated inside a Spring RestController is that
the object returned from our method is serialized and returned to the HTTP GET request
as JSON.

The AccountController also has methods mapped to the POST, DELETE, and PUT verbs
(using Spring’s @PostMapping, @Delete and @PutMapping annotations). So all the CRUD
operations of the original COBOL ACCOUNT-STORAGE-ACCESS program are now
available over an HTTP REST interface. This makes it easy to create a Web UI using any
modern JavaScript framework (a later chapter shows a UI written in React). It also means
the functionality is available to any other application that can make HTTP calls.

00_COBOL2_AM.indb 9200_COBOL2_AM.indb 92 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating a REST Interface    93

Visual COBOL Run Units
The Visual COBOL run-time has to do two different things:

	■ Enable procedural COBOL to run exactly as it always has done, even
though it is now being executed as instances of an object in a Java
Virtual Machine. This means that all the global run-time state has to be
preserved between calls to the procedural code.

	■ Enable procedural COBOL to be accessed from application servers
which use a thread pool to service incoming requests efficiently.

Wrapping each instance of our procedural program in a Run Unit enables the
Visual COBOL runtime to satisfy these two conflicting requirements. The Run
Unit is a lightweight container that enables each procedural COBOL program
to run as it always has done, without memory clashes and conflicts between
different threads.

Testing the Endpoints
Start the application up as described in the section entitled “Running the Application.”
There’s an explanation of automated tests for the application later in this book, but right now
we just want to try some of the different endpoints to get a feeling for how the application
works.

There are two free and widely used tools for manually testing an endpoint:

	■ cURL (Command-line URL) is an open-source command-line tool that can be
downloaded from https://curl.haxx.se.

	■ Postman is a commercial tool with a GUI. Postman provides a free-use tier that
does everything you need to follow along with the exercises in this book. You can
download it at https://www.getpostman.com.

Postman is easier to use, so we’ll concentrate on that in the following examples,, but in the
examples folder, there is a curl folder with a text file showing cURL commands with some
sample data in separate JSON files.

To add a new account:

1.	 Start Postman and create a new request called addAccount. If prompted, cre-
ate a new collection to save the request to accountService. Figure 6-3 shows the
Postman UI as the new request is created.

00_COBOL2_AM.indb 9300_COBOL2_AM.indb 93 4/19/21 5:08 PM4/19/21 5:08 PM

94  A COBOL-Based REST Service

2.	 Click the GET drop-down and change the verb to POST.

3.	 Fill in the URL as http://localhost:8080/service/account.

4.	 Click Headers and then add a header with the KEY Content-Type and VALUE
application/json.

5.	 Click Body, click Raw, and then add the following JSON:

{ “customerId”:2001,

 “balance”:999.05,

 “type”:3,

 “creditLimit”:4000.00 }

6.	 Click Send. You should see a response from the server with the Body:
{ “id”: 1001

 “customerId”:2001,

 “balance”:999.05,

 “type”:3,

 “creditLimit”:4000.00

 }

The actual ID returned will depend on the last record in the file.

Figure 6-3  Adding a new request to Postman

To read the account:

1.	 Create a new request in Postman called readAccount.

2.	 Set the URL to http://localhost:8080/service/account/1001.

00_COBOL2_AM.indb 9400_COBOL2_AM.indb 94 4/19/21 5:08 PM4/19/21 5:08 PM

	 Creating a REST Interface    95

3.	 Click Send. You should get back a Body with the value of the account.

To update the account:

4.	 Create a new PUT request called updateAccount.

5.	 Set the URL to http://localhost:8080/service/account.

6.	 Click Headers and then add a header with the KEY Content-Type and VALUE
application/json.

7.	 Click Body, click Raw, and then add the following JSON:

{ “id”:1001,

 “customerId”:2001,

 “balance”:777.05,

 “type”:3,

 “creditLimit”:4000.00}

8.	 Click Send. If you reread the record using the readAccount request, you should
see it with the updated values.

To delete the account:

1.	 Create a DELETE request called deleteAccount.

2.	 Set the URL to http://localhost:8080/service/account/1001.

3.	 Click Send. If you try to read the record back again, you will get a 404 (not
found) error.

At this point, you’ve exercised the functionality of the account service. You can try the
same sorts of things with the customer and transaction services.

The StatementController Class
The StatementController provides only one endpoint, which enables you to get the monthly
interest calculation for an account. Listing 6-11 shows the StatementController code.

Listing 6-11   The StatementController

@RestController

@RequestMapping(“/service/account”)

public class StatementController {

 private static final Logger LOGGER = LoggerFactory

 .getLogger(StatementController.class);

 @GetMapping(value = “/{id}/statement/{date}”)

 public ResponseEntity<StatementDto> calculateStatement(

00_COBOL2_AM.indb 9500_COBOL2_AM.indb 95 4/19/21 5:08 PM4/19/21 5:08 PM

96  A COBOL-Based REST Service

 @PathVariable(“id”) int id,

 @PathVariable(“date”) String date,

 @RequestParam(“rate”) String rate,

 @RequestParam(“initialBalance”) String balance) {

 BigDecimal dailyRate = null;

 BigDecimal initialBalance = null;

 LocalDate localDate = LocalDate.parse(date,

 DateTimeFormatter.BASIC_ISO_DATE);

 try {

 dailyRate = new BigDecimal(rate).divide(

 (new BigDecimal(365 * 100)), 10,

 RoundingMode.HALF_UP);

 initialBalance = new BigDecimal(balance);

 } catch (Exception e) {

 return new ResponseEntity<>(HttpStatus.BAD_REQUEST);

 }

 try (RunUnit<MonthlyInterest> ru = new RunUnit<>(

 MonthlyInterest.class)) {

 MonthlyInterest statement = (MonthlyInterest) ru

 .GetInstance(MonthlyInterest.class, true);

 try {

 statement.init(dailyRate, initialBalance, localDate,

 id);

 return ResponseEntity.ok(

 statement.getStatementDto());

 } catch (Exception e) {

 LOGGER.error(e.getMessage());

 return null;

 }

 }

 }

}

The StatementController picks up the account ID and starting date from the path since
these are arguments that determine the resource we are going to access. But the data
for the daily rate and the starting balance to begin the calculation from are passed in as
query string parameters. They are picked out using the @RequestParam notation. Start
the CreditService application and then enter this URL into a web browser:

http://localhost:8080/service/account/1/statement/20190701?rate=25

 &initialBalance=100

You should get some JSON back (exact values might be different as the transaction
data has been generated by a pseudo random process):

00_COBOL2_AM.indb 9600_COBOL2_AM.indb 96 4/19/21 5:08 PM4/19/21 5:08 PM

	 Summary    97

{

 “minimumPayment”:58.85,

 “endingAmount”:1177.06,

 “interestAmount”:13.68,

 “accountId”:1,

 “startDate”:”2019-07-01”

}

You might wonder why we need to pass in the starting balance – couldn’t we get it from
the account record? The answer is that we need to pass in the balance at the start of the
month for which we are doing the calculation. It could be calculated from the values in
the transaction data file, but in the interests of keeping the example simple, we are just
providing a value instead.

Summary
In this chapter, we wrapped some legacy COBOL code inside a Spring Boot application
to make it available over HTTP/HTTPS. In the next chapter, we’ll use MFUnit and JUnit to
run a set of test cases to cover the different layers of the application.

00_COBOL2_AM.indb 9700_COBOL2_AM.indb 97 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 9800_COBOL2_AM.indb 98 4/19/21 5:08 PM4/19/21 5:08 PM

99

C H A P T E R 7

 Automated Testing

In this chapter, we will test our application. This chapter covers:

	■ Strategies for testing

	■ MFUnit

	■ Testing the BusinessRules Layer

	■ Testing the Interoperation Layer

	■ Testing the Application End-to-End

We will use several different technologies in this chapter; MFUnit for testing procedural
COBOL, JUnit for testing Visual COBOL, and REST Assured for testing our Web service.
By the end of the chapter we will have a mix of unit and integration tests that cover every
layer in our application.

Strategies for Testing
This chapter builds up a comprehensive set of tests for the application we looked at in the
previous chapter. Although we haven’t looked at any tests so far, these tests were created
alongside the application used in this book. Although it isn’t a “real” application, it evolved
as the book was written and went through many changes (and bug fixes).

Having a test suite for all the different parts gave me the confidence to keep making
changes as I went along, and know that I hadn’t broke anything. And when things do break,
tests make it easier to quickly find out why and what.

Test-driven development (TDD) is a methodology where the developer writes a unit
test before writing the implementation code that will satisfy the test. For example, before
writing a method to calculate sales tax, you write a unit test that exercises the calculation

00_COBOL2_AM.indb 9900_COBOL2_AM.indb 99 4/19/21 5:08 PM4/19/21 5:08 PM

100  Automated Testing

functionality, and asserts that the method returns the correct values. At this point, the test
calls a stub method with no implementation.

The test at this point will always fail when run. The developer then fills out the method
with the actual implementation so that the test now passes. If you haven’t used TDD,
it might seem that you are doing a lot more work before you deliver any working code.
However, as you build out the functionality for the application, you are also creating an
extensive automated test suite that will make it easy to spot any regressions or new bugs.
It also ensures that any APIs you build remain stable for clients consuming the functional-
ity. The unit tests also serve as a form of documentation, since they spell out explicitly the
expected behavior of your code.

Unit tests are not usually enough on their own, as they are testing only individual pieces
of functionality in isolation. Often unit tests will make use of mocks, fakes, or stubs to
replace other parts of the system, which are required for the test to run, but are not part
of the actual functionality on test. For example, persistent databases are often replaced
in unit tests by in-memory databases that enable you to test your business logic without
worrying about the state left over from previous tests.

Mocks are also used for any other part of the system that might be slow to respond;
unit test suites are expected to run fast. Developers will run the unit test suite often. They
will run the unit tests every time before they commit code back to the source repository;
they will also run the unit tests regularly as they are changing code to make sure nothing
has broken.

Unit tests provide one level of confidence, but applications also need integration or
end-to-end tests that test the system in its entirety. Integration tests take longer to run and
often require more set up (for example, providing a known set of test data before they are
started), so they are not run quite as often as unit tests.

However, integration tests should also be automated so that they can be run regularly
by Continuous Integration systems. Probably the best known CI system is the open-source
Jenkins, but there are many other systems both proprietary and open-source.

Downloading the Test Examples
The test examples are organized according to the following folders:

	■ MFUnit introduces MFUnit for testing COBOL Logic

	■ CreditServiceApplication is the REST service application from Chapter 6, plus:

	■ MFUnit tests for the COBOL Business Logic

	■ JUnit tests for the interoperation layer

	■ JUnit integration tests for the entire application

00_COBOL2_AM.indb 10000_COBOL2_AM.indb 100 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing MFUnit    101

Test Doubles—Mocks, Fakes and Stubs
A Test Double is a substitute for a part of your system that simplifies testing a
particular part of your system. Fakes and stubs mimic in some way the behavior
of another part of your system (a part that you aren’t testing, but that is neces-
sary to enable the part under test to work). Mocks are a variant that enable you
to verify that a particular piece of code was called the expected number of times
and with the expected values.

A lot of these techniques are enabled by designing APIs around interfaces
rather than concrete classes; it’s much easier to replace another part of your
system if it is always represented in your code by an interface. Unfortunately, the
kind of “legacy” code we are using in our example, and that you are likely to en-
counter in the real world, was designed and written before these techniques were
common. This makes it difficult to remove it and replace it with mock functional-
ity for testing, so we are forced in this chapter to use some different techniques
to make our tests repeatable and fast.

Download the example code; the text will tell you when to import individual projects
into an Eclipse workspace. The example code in this chapter contains six projects; it is
easier to take care of errors by importing them as they are needed and in the right order.

Introducing MFUnit
Most Java developers are familiar with JUnit, the Java Unit testing framework. Java IDEs
such as Eclipse and IntelliJ support JUnit and provide easy ways to run JUnit tests and
display the results. Maven also supports JUnit and has a project structure that includes a
test folder. By default, Maven will run those tests every time you run the build. Maven also
enables you to mark dependencies in the POM file as only being needed for testing, so
that you don’t bloat deployables with libraries not needed at run-time.

Micro Focus has provided a test framework for Visual COBOL called the Micro Focus
Unit Testing Framework (MFUnit). MFUnit tests provide a convenient way to test existing
procedural code and can be used for COBOL whether it is compiled to native code or JVM
or .NET. Visual COBOL code that is being compiled to JVM can be tested with MFUnit
but it can also be tested with JUnit.

However, it is easier to test procedural code with MFUnit because test code written in
COBOL shares the same semantics and data structures as the code you are testing. The
BusinessInterop project examined in the previous chapter provides a Java API, so although
it is written in COBOL, it feels more natural to test it using JUnit.

00_COBOL2_AM.indb 10100_COBOL2_AM.indb 101 4/19/21 5:08 PM4/19/21 5:08 PM

102  Automated Testing

This chapter describes both MFUnit and JUnit tests. But before diving into the test code
for our application, we’ll illustrate the basics of MFUnit with a simple program that carries
out multiplication and division.

Testing a Simple Calculator with MFUnit
There is a lot of legacy COBOL code in the world that doesn’t have very much in the way
of automated testing. It was written at a time when it was common to have large teams of
testers who would work through test scripts to exercise the whole system. However, if you
want to migrate and evolve this legacy code to the new world of microservices, you need
fast feedback to know when you have broken something; that means automated tests that
can be run quickly (ideally in a few seconds or less) every time you make changes.

MFUnit is ideal for this purpose. It enables a COBOL developer to write tests using stan-
dard Micro Focus COBOL. You can use it to test procedural code that has been compiled
as native code. Then recompile the code and the tests as JVM code, and run them again
to verify that you are still getting the expected behavior. And then when you start modifying
your JVM based code, the tests will help you quickly spot any breakages. MFUnit enables
you test procedural code by calling entire programs or by calling individual entry-points.

Running the Test Suites
There is an MFUnit test suite for the BusinessRules project, but first we’ll look at a very
simple program and test suite. Download the examples for this chapter. There are two
subfolders: MFUnit and CreditServiceApplication. Import everything under MFUnit into
an Eclipse workspace. You should see four projects:

	■ NativeCalculator

	■ NativeCalculatorTest

	■ Calculator

	■ CalculatorTest

The source code in the two native projects is identical to the source code in the other
two projects, but one pair of projects builds to native code and the other pair to JVM. The
source code for the calculator is shown in Listing 7-1. It has a single entry-point that takes
four parameters by reference. It multiplies or divides operand1 by operand2 depending on
the value of function-code and places the answer into result.

Errors are signaled by a non-zero value of return-code (a COBOL special register).
The special register is a 16-, 32- or 64-bit signed integer; the size depends on the bitism
of the compiler and can be overridden by the RTNCODE-SIZE directive (see the Micro
Focus documentation). For COBOL JVM, it defaults to 64 bits.

00_COBOL2_AM.indb 10200_COBOL2_AM.indb 102 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing MFUnit    103

Listing 7-1  The calculator program

 program-id. MainProgram.

 data division.

 working-storage section.

 linkage section.

 01 operand1 pic s9(15)v9(10).

 01 operand2 pic s9(15)v9(10).

 01 result pic s9(15)v9(10).

 01 function-code pic x.

 procedure division using by reference operand1 operand2

 function-code result

 returning return-code.

 evaluate function-code

 when “M”

 multiply operand1 by operand2 giving result

 when “D”

 divide operand1 by operand2 giving result

 when other

 move -1 to return-code

 end-evaluate

 display “wait”

 goback.

There are (at least) three test cases required to test this program:

	■ Multiplication

	■ Division

	■ Invalid function-code (one that isn’t “D” or “M”).

Listing 7-2 shows the test suite for our calculator program.

Listing 7-2  The calculator test suite

 copy “mfunit_prototypes.cpy”.

 program-id. MainProgramTest.

 data division.

 working-storage section.

 78 TEST-MultiplyTest value “MultiplyTest”.

 78 TEST-DivideTest value “DivideTest”.

 78 TEST-InvalidOpTest value “InvalidOpTest”.

 copy “mfunit.cpy”.

 01 operand1 pic s9(15)v9(10).

00_COBOL2_AM.indb 10300_COBOL2_AM.indb 103 4/19/21 5:08 PM4/19/21 5:08 PM

104  Automated Testing

 01 operand2 pic s9(15)v9(10).

 01 operator-code pic x.

 01 result pic s9(15)v9(10).

 01 displayable pic x(28).

 01 msg pic x(100).

 78 program-under-test value “Calculate”.

 procedure division.

 entry MFU-TC-PREFIX & TEST-MultiplyTest.

 move 33 to operand1

 move 3.1 to operand2

 move “M” to operator-code

 call program-under-test using by reference operand1 operand2

 operator-code result

 returning return-code

 if result <> 102.3

 display result

 call MFU-ASSERT-FAIL-Z using z”Expected 102.3”

 end-if

 goback returning return-code

 .

 entry MFU-TC-PREFIX & TEST-DivideTest.

 move 33 to operand1

 move 3.3 to operand2

 move “D” to operator-code

 call program-under-test using by reference operand1 operand2

 operator-code result

 returning return-code

 if result <> 10

 display result

 call MFU-ASSERT-FAIL-Z using z”Expected 10”

 end-if

 goback returning return-code

 .

 entry MFU-TC-PREFIX & TEST-InvalidOpTest.

 move 33 to operand1

 move 3.1 to operand2

 move “X” to operator-code

 call program-under-test using by reference operand1 operand2

 operator-code result

 returning return-code

 if return-code = 0

 call MFU-ASSERT-FAIL-Z using

 z”Expected non-zero return code”

00_COBOL2_AM.indb 10400_COBOL2_AM.indb 104 4/19/21 5:08 PM4/19/21 5:08 PM

	 Introducing MFUnit    105

 else

* Zero return code before completing or test will be marked

* as failed.

 move 0 to return-code

 end-if

 goback returning return-code

 .

$region Test Configuration

 entry MFU-TC-SETUP-PREFIX & TEST-MultiplyTest.

 entry MFU-TC-SETUP-PREFIX & TEST-DivideTest.

 entry MFU-TC-SETUP-PREFIX & TEST-InvalidOpTest.

$if JVMGEN set

 call “MainProgram”

$else

 call “NativeCalculator”

$end-if

 goback returning 0.

 entry MFU-TC-TEARDOWN-PREFIX & TEST-MultiplyTest.

 goback returning 0.

 entry MFU-TC-METADATA-SETUP-PREFIX & TEST-MultiplyTest.

 move “This is a example of a dynamic description”

 to MFU-MD-TESTCASE-DESCRIPTION

 move 4000 to MFU-MD-TIMEOUT-IN-MS

 move “smoke” to MFU-MD-TRAITS

 set MFU-MD-SKIP-TESTCASE to false

 goback.

$end-region

MFUnit uses conventions to define the format of the entry-points in a test suite:

	■ Each test case entry-point starts with the name MFU-TC-PREFIX (this is a literal
defined in mfunit.cpy).

A test case is assumed to pass unless it sets a non-zero value into the return-code
special register or calls either MFU-ASSERT-FAIL or MFU-ASSERT-FAIL-Z during execution. The
-Z variant indicates that this routine expects a null-terminated string (C style string), which
you can create in Micro Focus COBOL by prefixing z to a literal. For example z”Hello World”
creates the string Hello World with a null byte at the end.

	■ Each setup function starts with the prefix MFU-TC-SETUP-PREFIX followed by the
name of a test case.

	■ Each teardown function starts with the prefix MFU-TC-TEARDOWN-PREFIX followed by
the name of a test case.

00_COBOL2_AM.indb 10500_COBOL2_AM.indb 105 4/19/21 5:08 PM4/19/21 5:08 PM

106  Automated Testing

	■ Metadata functions start with the prefix MF-TC-METADATA-SETUP-PREFIX followed by
the name of a test case.

	■ MFUnit also provides some entry-points for asserting failures and defining metadata.
These are defined in mfunit_prototypes.cpy, included at the top of the program.

Setup, teardown, and metadata definition are all optional. This test suite shows teardown
and metadata for the TEST-MultiplyTest test case only. But all three testcases share the
same setup code – the setup entry-points for each test case follow each other consecu-
tively, with a single block of code beneath; executing any of these entry-points executes
the same code.

Figure 7-1 shows the order of execution of entry-points for an individual test case called
T1. The steps in dotted lines are optional; if you don’t create entry-points for a particular test
case there is no error. But if you add any of these metadata points with a name that does
not also appear in a test case, MFUnit will give an error and will not run the test suite. For
example, if you add entry MFU-TC-SETUP-PREFIX-T1 but don’t add entry MFU-TC-PREFIX-T1,
MFUnit displays an error and does not run the test suite.

MFU-TC-METADATA-SETUP-T1

MFU-TC-SETUP-T1

MFU-TC-TEARDOWN-T1

MFU-TC-PREFIX-T1

Figure 7-1  Execution of T1 test case

The CalculatorTest code itself uses conditional compilation to provide different code
depending on whether we are executing as JVM or native code. The setup code is needed
only to load the calculator into memory so that its entry-point is available. However, because
the executable artefacts for JVM and Native code are different, we need different calls here.

When this project is built as native code, we get an artefact called NativeCalculator.
dll (Windows) or NativeCalculator.so (Linux), but when it is built as JVM, the artefact is
MainProgram.class. Code following $if JVMGEN set up to the $else is only compiled when
the JVMGEN directive is set. The code between $else and $end is compiled when the
JVMGEN directive is not set. In this case the assumption is that if JVMGEN is not set, we
are compiling for native code.

00_COBOL2_AM.indb 10600_COBOL2_AM.indb 106 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the BusinessRules Layer    107

To run the native code test suite:

1.	 In the COBOL Explorer, right-click NativeCalculatorTest and then click
Run As > COBOL Unit Test.

2.	 After a moment, you should see the Micro Focus Unit Testing pane as shown in
Figure 7-2. It shows the three test cases and a pass for each one.

Figure 7-2  The Micro Focus Unit Testing pane

You can also run the JVM test suite:

1.	 In the COBOL Explorer, right-click CalculatorTest and click Run As > COBOL
JVM Unit Test.

2.	 You should see the Micro Focus Unit Testing pane as before, showing the same
test case and that each one passes.

Spend a little time playing with the two test suites. Verify that the code being tested
in the two cases is identical and that the only difference is how it is compiled, and then
experiment with adding new test cases of your own.

Testing the BusinessRules Layer
The previous section introduced MFUnit with a test suite for a simple program. In this sec-
tion we look at a test suite for the original legacy procedural code of the application. The
procedural part of the CreditService application has logic for the CRUD operations for
customers, accounts, transactions, and calculating interest. This is what the tests focus on.

The value of these tests will become apparent later in the book when we start refactoring
the BusinessRules project; only when all the tests pass can we be sure our refactored
project is working like the original.

The BusinessRules project is mainly concerned with data persistence, so any test that
is run needs to run against a known state of stored data. With Java projects these sorts of
tests can often be run using an in-memory database like HSQL, which is initialized from
scratch every time the tests are run. This option isn’t available for our legacy COBOL code,
which is using COBOL files (which, in turn, use the file system).

00_COBOL2_AM.indb 10700_COBOL2_AM.indb 107 4/19/21 5:08 PM4/19/21 5:08 PM

108  Automated Testing

To keep these tests robust, simple, and fast, the test setup methods simply delete the
backing files before the start of every test case. Every test starts from the known state of
“no data”.

To run the BusinessRules tests:

1.	 Start Eclipse with a new empty workspace.

2.	 Import the BusinessRules and BusinessSystemTests projects from the
CreditServiceApplication of the Chapter 7 examples.

3.	 Right-click the BusinessRules project, click Properties > Builders, and then
edit mvn_businessrules for your local setup (as explained in the “Importing the
Example Projects” section in Chapter 5).
You don’t need this builder to work in order to run the tests, but it will need to
work later on the chapter; fixing it now will remove a source of error messages.

4.	 Click Run > Run Configurations, select COBOL JVM Unit Test, and then
click the New icon.
The test suite for the calculator didn’t need any specific configuration, which
is why we could run it as a standard COBOL JVM Unit Test without any extra
settings.

5.	 Set the name to BusinessSystemTests and then click the Browse button to
select the BusinessSystemTests project as the COBOL JVM Unit Test Project.

6.	 Click the Environment tab and add three environment variables:
dd_ACCOUNTFILE =
 application-download/BusinessSystemTests/testData/account.dat
dd_TRANSACTIONFILE=
application-download/BusinessSystemTests/testData/transaction.dat
dd_CUSTOMERFILE=
application-download/BusinessSystemTests/testData/customer.dat

Do not set these environment variables to the files where your “production” data
(generated in Chapter 5) is stored. These files are deleted at the start of every
test case.

7.	 Click Run.
You should see the Micro Focus Unit Testing pane with the BusinessSystemTests
test suite, showing 19 tests with no failures or errors.

The BusinessSystemTests project contains the following programs (you can see them
under src/default package in the COBOL or Project Explorer):

00_COBOL2_AM.indb 10800_COBOL2_AM.indb 108 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the BusinessRules Layer    109

	■ TestAccountStorage.cbl

	■ TestCustomerStorage.cbl

	■ TestTransactionStorage.cbl

	■ TestInterestCalculator

	■ TestCalendar.cbl

	■ Helper-Functions.cbl

The first three programs provide test cases for the CRUD functions supplied by the
ACCOUNT-TEST-STORAGE program. TestInterestCalculator.cbl tests the calculation
functions in InterestCalculator. TestCalendar.cbl tests the functionality provided by the
Calculator program.

The last program, Helper-Functions.cbl, contains common code shared between the
other test suites, in particular the setup functions that ensure all tests start from a known
state.

We’ll start with a look at the TestAccountStorage program, organized into separate
sections to make it easier to follow the explanations. Listing 7-3 shows the beginning of
the TestAccountStorage program, together with the setup-account-test section from
near the end of the program.

Listing 7-3  Start of the TestAccountStorage program

 copy “mfunit_prototypes.cpy”.

 copy “cblproto.cpy”.

 program-id. TestAccountStorage.

 data division.

 working-storage section.

 copy “PROCEDURE-NAMES.cpy”.

 copy “FUNCTION-CODES.cpy”.

 copy “HELPER-FUNCTIONS.cpy”.

 78 TEST-WriteAccount value “TestWriteAccount”.

 78 TEST-ReadLastAccount value “TestReadLastAccount”.

 78 TEST-ReadRecords value “TestReadAccountRecords”.

 78 TEST-UpdateAccount value “TestUpdateAccount”.

 01 write-mode pic x.

 78 FK-CUSTOMER-ID value 888.

 78 FK-CUSTOMER-FIRST-NAME value “Verity”.

 78 FK-CUSTOMER-LAST-NAME value “Talkington”.

 78 TEST-ID-1 value 200.

00_COBOL2_AM.indb 10900_COBOL2_AM.indb 109 4/19/21 5:08 PM4/19/21 5:08 PM

110  Automated Testing

 78 TEST-BALANCE-1 value 400.21.

 78 TEST-TYPE-1 value “C”.

 78 TEST-CREDIT-LIMIT-1 value 1000.00.

 78 TEST-ID-2 value 201.

 78 TEST-BALANCE-2 value 702.31.

 78 TEST-TYPE-2 value “C”.

 78 TEST-CREDIT-LIMIT-2 value 2000.00.

 78 TEST-ID-3 value 210.

 78 TEST-BALANCE-3 value 99.37.

 78 TEST-TYPE-3 value “C”.

 78 TEST-CREDIT-LIMIT-3 value 750.00.

 01 WS-ID-TABLE.

 03 WS-ID-ROW pic x(4) comp-5 OCCURS 3 TIMES.

 01 i pic x(2) comp-5.

 01 msg pic x(200).

 01 function-code pic x.

 01 file-status.

 03 status-byte-1 pic x.

 03 status-byte-2 pic x.

 copy “CUSTOMER-RECORD.cpy” replacing ==(PREFIX)== by WS.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by WS.

 copy “ACCOUNT-RECORD.cpy” replacing ==(PREFIX)== by TEST.

 copy “mfunit.cpy”.

 procedure division.

$region Test Configuration

 entry MFU-TC-SETUP-PREFIX & TEST-UpdateAccount.

 entry MFU-TC-SETUP-PREFIX & TEST-WriteAccount.

 entry MFU-TC-SETUP-PREFIX & TEST-ReadRecords.

 entry MFU-TC-SETUP-PREFIX & TEST-ReadLastAccount.

 perform setup-account-test

 goback returning 0.

$end-region

*> Omitted code

*>...

 setup-account-test section.

 call HELPER-FUNCTIONS

 call INIT-ACCOUNT-TEST using by reference function-status

 goback.

Most of this listing is the data declarations, including the copybooks referenced else-
where in the program. As with the Calculator test, from earlier in this chapter, it also includes
two copybooks used by MFUnit: mfunit_prototypes.cpy and cblproto.cpy.

00_COBOL2_AM.indb 11000_COBOL2_AM.indb 110 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the BusinessRules Layer    111

Test Case Setup Code
The code in the Test Configuration region of Listing 7-3 contains the setup for all the test
cases in this program: perform setup-account-test. The code in the setup-account-test
section loads the HELPER-FUNCTIONS program and then calls the INIT-ACCOUNT-TEST
entry-point. Listing 7-4 shows just this entry-point from HELPER-FUNCTIONS together
with the setup-test-data section.

Listing 7-4  The setup code from the HELPER-FUNCTIONS program

*> code fragment

 ENTRY INIT-ACCOUNT-TEST using by reference lnk-function-status.

 perform init-helper

 set open-ppointer to entry OPEN-ACCOUNT-FILE

 set write-ppointer to entry WRITE-ACCOUNT-RECORD

 set read-one-record-ppointer to entry FIND-ACCOUNT-ID

 set read-last-ppointer to entry READ-LAST-ACCOUNT-RECORD

 set read-records-ppointer to entry READ-ACCOUNT-RECORD

 display “dd_ACCOUNTFILE” upon environment-name

 perform setup-test-data

 goback.

*> Omitted code

*> ...

 setup-test-data section.

 move spaces to ws-filename

 accept ws-filename from environment-value

 if ws-filename equals spaces

 move z”Environment variable not set” to msg

 call MFU-ASSERT-FAIL-Z using msg

 goback

 end-if

 call CBL-CHECK-FILE-EXIST using ws-filename

 file-details

 if return-code = 0

*> delete the file before running the test

 display “Deleting file”

 call CBL-DELETE-FILE using ws-filename

 end-if

 set succeeded to true

 move function-status to lnk-function-status

 exit section.

*> Omitted code

*> ...

 init-helper section.

00_COBOL2_AM.indb 11100_COBOL2_AM.indb 111 4/19/21 5:08 PM4/19/21 5:08 PM

112  Automated Testing

 move 0 to lnk-function-status

 move spaces to VERIFICATION-RECORD

 exit section.

Figure 7-3 shows the order of initialization and test cases. The entry INIT-ACCOUNT-TEST
sets up some procedure pointers to entry-points in the ACCOUNT-STORAGE-ACCESS
program, then performs the setup-test-data section that deletes the data file for the cur-
rent test. The init-helper section zeroes the lnk-function-status flag. This section is
called at the start of every entry-point in HELPER-FUNCTIONS.

All callers of the HELPER-FUNCTIONS program check the status flag on return from
any entry-point and fail the current test case if the status is set to failed. A function-status
item is defined in copybook HELPER-FUNCTIONS.cpy as shown in Listing 7-5. Level 88
items define condition-names. You can set their parent item to any of the conditions defined
and use any of the condition-names inside a conditional clause.

Listing 7-5  The function-status flag

01 function-status pic 9.

 88 failed value 0.

 88 succeeded value 1.

 88 no-more-records value 2.

init-helper also sets the VERIFICATION-RECORD data item to spaces. The VERIFICATION-
RECORD data item is used for comparing actual results to expected values; not all tests use
it but clearing it every time reduces a possible cause of errors.

HELPER-FUNCTIONS

MFU-ACCOUNT-TEST

init-helper-section.

bc

setup-test-data section

TestAccountStorage

MFU-TC-SETUP-TEST-UpdateAccount

MFU-TC-PREFIX-TEST-UpdateAccount

a

1

2

Figure 7-3  Flow for initialization and running a test case

00_COBOL2_AM.indb 11200_COBOL2_AM.indb 112 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the BusinessRules Layer    113

Account Storage Test Case Code
We’ll look at just one of the test cases for the account storage code; TEST-UpdateAccount.
Listing 7-6 is the code for this test case from TestAccountStorage.cbl, together with the
write-an-account-record section, which is used by several of the test cases.

Listing 7-6  Test case TEST-UpdateAccount

entry MFU-TC-PREFIX & TEST-UpdateAccount.

 if failed perform test-failed end-if *> check for setup failure

 move TEST-ID-1 to TEST-ACCOUNT-ID

 move FK-CUSTOMER-ID to TEST-CUSTOMER-ID

 move TEST-BALANCE-1 to TEST-BALANCE

 move TEST-TYPE-1 to TEST-TYPE

 move TEST-CREDIT-LIMIT-1 to TEST-CREDIT-LIMIT

 move WRITE-RECORD to write-mode

 perform write-an-account-record

 move TEST-BALANCE-2 to TEST-BALANCE

 move TEST-CREDIT-LIMIT-2 to TEST-CREDIT-LIMIT

 move UPDATE-RECORD to write-mode

 perform write-an-account-record

 move spaces to WS-ACCOUNT

 move TEST-ID-1 to WS-ACCOUNT-ID

 call COMPARE-RECORDS using by value

 length of WS-ACCOUNT

 by reference WS-ACCOUNT

 TEST-ACCOUNT

 function-status

 goback returning return-code.

*> Omitted code

*> ...

write-an-account-record section.

 move OPEN-I-O to function-code

 call OPEN-TEST-FILE using by value function-code

 by reference function-status

 if failed perform test-failed end-if

 call WRITE-TEST-RECORD using by value write-mode

 by reference TEST-ACCOUNT

 function-status

 if failed perform test-failed end-if

 call CLOSE-TEST-FILE using by reference function-status

 if failed perform test-failed end-if

 exit section.

The test case starts by checking the function-status flag for the failed condition. Why
do we start by checking for a failure before we’ve run any test-code? Because MFUnit runs

00_COBOL2_AM.indb 11300_COBOL2_AM.indb 113 4/19/21 5:08 PM4/19/21 5:08 PM

114  Automated Testing

the initialization code shown in Figure 7-3 before each test case and this might fail for any
one of several reasons (for example, if the environment variable for the data file wasn’t set).
If the initialization code doesn’t succeed, then the test won’t behave as expected; and a
pass or fail isn’t really telling you whether the code under test is working or not.

Interest Calculator Test Case Code
All we really want to test with InterestCalculator program is whether it carries out inter-
est calculations correctly. However, it depends on ACCOUNT-STORAGE-ACCESS for
reading transaction records that have the data it needs. A test will require some actual
transaction records to operate on.

With modern Java applications and test frameworks, there are different options for
mocking out a storage layer so that we can supply test data without actually writing it to
files. With legacy COBOL, however, this is rarely an option.

To make our test cases for the Interest Calculator independent of each other and eas-
ily rerunnable, each one starts by writing some test transaction records so that they can
be read back again by ACCOUNT-STORAGE-ACCESS for the tests. This means these
tests are closer to being integration or system tests than they are unit tests; in effect, we
are testing our entire storage layer every time we run these tests as well as the Interest-
Calculator itself.

When possible, this is something that you want to minimize. You get the best test
coverage by having many unit tests that cover all the edge cases and exception paths as
well as the “happy path.” Unit tests should be small, independent (so you can run them
in order or in isolation from each other), and run fast so that it is practical to run them on
every code commit. The more complex your test, and the more dependencies on the rest
of the system needed in order to run it, the longer they will take to run.

For our example test suite, we have three test cases for the InterestCalculator, all of
which run on the same set of test data that is created at the beginning of every test case.
A more comprehensive test suite would create some different sets of test-data so that
other edge-cases could be tested. And adding regression tests as bugs are found would
also require different test datasets.

The four cases tested here are:

	■ Basic interest calculation (“the happy path”)

	■ Interest calculation when we set the rate to zero

	■ Interest calculation when there are no transactions for the account and
period selected

	■ Interest calculation with initial balance of zero and no transactions

00_COBOL2_AM.indb 11400_COBOL2_AM.indb 114 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the BusinessRules Layer    115

Because TestInterestCalculator.cbl is going to create test data at the start of every test
case, it uses HELPER-FUNCTIONS in the same way as the storage tests we looked at
earlier.
Listing 7-7 shows the initialization code for the InterestCalculator test suite.

Listing 7-7  The initialization code for TestInterestCalculator

 entry MFU-TC-SETUP-PREFIX & TEST-TestInterestCalculation.

 entry MFU-TC-SETUP-PREFIX & TEST-TestZeroInterestCalculation

 entry MFU-TC-SETUP-PREFIX & TEST-NoTransactionsCalculation.

 entry MFU-TC-SETUP-PREFIX & TEST-ZeroBalanceTransactionsCalculation.

 perform test-setup

 perform write-multiple-records

 goback. test-setup section.

 call “INTEREST-CALCULATOR”

 call HELPER-FUNCTIONS

 call INIT-TRANSACTION-TEST using by reference function-status

 if failed perform setup-failed end-if

 .

 write-multiple-records section.

 move OPEN-WRITE to function-code

 call OPEN-TEST-FILE using by value function-code

 by reference function-status

 move WRITE-RECORD to function-code

 move TEST-TRANSACTION-ID-1 to TEST-TRANSACTION-ID

 move FK-ACCOUNT-ID to TEST-ACCOUNT-ID of TEST-TRANSACTION-RECORD

 move TEST-AMOUNT-1 to TEST-AMOUNT

 move TEST-TRANS-DATE-1 to TEST-TRANS-DATE

 move TEST-DESCRIPTION-1 to TEST-DESCRIPTION

 call WRITE-TEST-RECORD using by value function-code

 by reference TEST-TRANSACTION-RECORD

 function-status

 if failed perform test-failed end-if

 move TEST-TRANSACTION-ID-2 to TEST-TRANSACTION-ID

 move FK-ACCOUNT-ID to TEST-ACCOUNT-ID of TEST-TRANSACTION-RECORD

 move TEST-AMOUNT-2 to TEST-AMOUNT

 move TEST-TRANS-DATE-2 to TEST-TRANS-DATE

 move TEST-DESCRIPTION-2 to TEST-DESCRIPTION

 call WRITE-TEST-RECORD using by value function-code

 by reference TEST-TRANSACTION-RECORD

 function-status

 if failed perform test-failed end-if

 move TEST-TRANSACTION-ID-3 to TEST-TRANSACTION-ID

 move FK-ACCOUNT-ID to TEST-ACCOUNT-ID of TEST-TRANSACTION-RECORD

00_COBOL2_AM.indb 11500_COBOL2_AM.indb 115 4/19/21 5:08 PM4/19/21 5:08 PM

 move TEST-AMOUNT-3 to TEST-AMOUNT

 move TEST-TRANS-DATE-3 to TEST-TRANS-DATE

 move TEST-DESCRIPTION-3 to TEST-DESCRIPTION

 call WRITE-TEST-RECORD using by value function-code

 by reference TEST-TRANSACTION-RECORD

 function-status

 if failed perform test-failed end-if

 call CLOSE-TEST-FILE using by reference function-status

 .

 setup-failed section.

 call MFU-ASSERT-FAIL-Z using by reference z”Test setup failed”

 goback.

test-failed section.

 call MFU-ASSERT-FAIL-Z using

 by reference z”Test helper function failed”

 goback.

The setup code uses the HELPER-FUNCTIONS to initialize a transaction test (since
transaction records are what we need to run the test) and then writes three test transaction
records. All are for the same time period (August 2019) and all belong to the same account.

Listing 7-8 shows the simplest test case – calculate the interest for the month for which
we have transactions (with a non-zero starting balance and a non-zero rate of interest)
and check the results.

Listing 7-8  Test case for the happy path test case

 entry MFU-TC-PREFIX & TEST-TestInterestCalculation.

 if failed perform setup-failed end-if

 divide 1 by 3650 giving WS-DAY-RATE *> 10% interest rate

 move “20190801” to TEST-TRANS-DATE

 move START-AMOUNT to WS-AMOUNT

 move FK-ACCOUNT-ID to WS-ACCOUNT-ID

 call CALCULATE-INTEREST using by value TEST-TRANS-DATE

 WS-ACCOUNT-ID

 by reference WS-DAY-RATE

 WS-AMOUNT

 WS-INTEREST

 WS-MINIMUM-PAYMENT

 WS-STATUS

 if WS-STATUS <> “00”

 move “File Status of “ & WS-STATUS & x”00” to msg

 call MFU-ASSERT-FAIL-Z using msg

 end-if

00_COBOL2_AM.indb 11600_COBOL2_AM.indb 116 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the Interoperation Layer    117

 if WS-MINIMUM-PAYMENT <> 18.55

 move “Expected Minimum payment 18.55, actual “

 & WS-MINIMUM-PAYMENT & x”00” to msg

 call MFU-ASSERT-FAIL-Z using msg

 end-if

 if WS-AMOUNT <> 371.01

 move “Expected balance 371.01, actual “

 & WS-MINIMUM-PAYMENT & x”00” to msg

 call MFU-ASSERT-FAIL-Z using msg

 end-if

 if WS-INTEREST <> 3.08

 move “Expected interest 371.01, actual “

 & WS-INTEREST & x”00” to msg

 call MFU-ASSERT-FAIL-Z using msg

 end-if

 goback.

Testing Legacy Code with MFUnit
MFUnit brings some of the testing techniques that have been proven with frameworks
such as JUnit to legacy COBOL. It gives you a structured way to write individual tests,
together with setup and teardown code where needed. The metadata functions (which
we didn’t discuss here) also provide you with ways of adding descriptive data to tests and
grouping them together.

Even a very small test suite like the one shown here provides some confidence to
make refactoring changes. If this were a real application though, it would need to be more
comprehensive and cover several more edge and error conditions. However, we will see
it again later in the book when we make some major changes to the BusinessRules layer.
In the next section, we look at testing the interoperation layer.

Testing the Interoperation Layer
The next project to test is BusinessInterop. Although this is written in COBOL, the tests
are written in Java using JUnit. The BusinessInterop project API is object-oriented, intended
for use by Java applications, and JUnit and Java feels like a better fit for testing it. The tests
are in a separate project: interoptests.

To import the BusinessInterop and its tests:

1.	 Start Eclipse with the workspace you used when importing projects in section
Testing the BusinessRules layer.

2.	 Import the BusinessInterop and interoptests projects.

00_COBOL2_AM.indb 11700_COBOL2_AM.indb 117 4/19/21 5:08 PM4/19/21 5:08 PM

118  Automated Testing

3.	 Right-click the BusinessInterop project, click Properties > Builders, and
then edit mvn_businessinterop for your local setup (as explained in the
“Importing the Example Projects” section in Chapter 5).

4.	 Click Run > Run Configurations, select JUnit, and then click the New icon.

5.	 Set the name to InteropTests, select the interoptests project for the Run all
tests in the selected project, package or source folder field, and in the
Test runner field, select JUnit 4

6.	 Click the Environment tab and then add three environment variables:
dd_ACCOUNTFILE =
 application-download/JavaInteropTests/testData/account.dat
dd_TRANSACTIONFILE=
application-download/JavaInteropTests/testData/transaction.dat
dd_CUSTOMERFILE=
application-download/JavaInteropTests/testData/customer.dat

Do not set these environment variables to the files where your “production” data
(generated in Chapter 5) is stored. These files are deleted at the start of every
test case.

7.	 Set the Test runner field to JUnit 4.

8.	 Click Run.
You should see the JUnit test pane with the InteropTest test suite, showing 28
tests with no failures or errors.

The BusinessInterop project depends on the BusinessRules project, with which it in-
teracts through COBOL CALLs. This is another codebase that is tied very closely into
physical file storage in a way that makes it hard to mock out in any of the usual ways (by
replacing an interface or using a library like Mockito or JMock).

So once again, we’ve taken the line of least resistance and accepted that the persistence
layer is going to be involved in our tests even though that is not ideal. The difference this
time is that we have three fixed files of test data (you can see them in the src/main/resources
folder) and they are named account.testdat, customer.testdat and transaction.testdat. They
are regular Micro Focus COBOL indexed files, but they have a .testdat extension to dif-
ferentiate them from files with the usual .dat extension. This is for two reasons:

	■ It is easy to distinguish the test data from other data files that might be on the
machine.

	■ If your source control system has been set to ignore files of type .dat (because they
are not part of the source code), you can still store the .testdat files alongside the
source for the test suite.

00_COBOL2_AM.indb 11800_COBOL2_AM.indb 118 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the Interoperation Layer    119

For example, I used git as source control when developing the examples in this book,
so my .gitignore file had the line:

*.dat

This stopped me from adding .dat files to my repository, but I was able to store the
.testdat file.

The setup for each test copies them to the locations indicated by the dd_ environment
variables setup in Step 6. Because the files are small, this is a fairly fast setup step; on a
fast laptop, all 28 tests run in less than a second. Listing 7-9 shows the setup code. The
setup method can be any public void method annotated with @Before. JUnit has only one
setup method per class.

Listing 7-9  The setup code for the InteropTests

public class InteropTest {

 private static BigDecimal DAILY_RATE = new BigDecimal(0.1)

 .divide(new BigDecimal(365), 10, RoundingMode.HALF_UP);

 @Before

 public void initTestData() throws IOException {

 copyDataResource(“account.testdat”, “dd_ACCOUNTFILE”);

 copyDataResource(“customer.testdat”, “dd_CUSTOMERFILE”);

 copyDataResource(“transaction.testdat”,

 “dd_TRANSACTIONFILE”);

 }

 private void copyDataResource(String source, String target)

 throws IOException {

 URL url = InteropTest.class.getClassLoader()

 .getResource(source);

 String path = url.getPath();

 assertNotNull(String.format(

 “No resource found for %s”, source), path);

 Path sourcePath = new File(path).toPath();

 String environmentValue = System.getenv().get(target);

 assertNotNull(String.format

 (“No value found for %s”, target),

 environmentValue);

 assertNotNull(sourcePath);

 File targetFile = new File(environmentValue);

 Files.copy(sourcePath, targetFile.toPath(),

 StandardCopyOption.REPLACE_EXISTING);

 }

00_COBOL2_AM.indb 11900_COBOL2_AM.indb 119 4/19/21 5:08 PM4/19/21 5:08 PM

120  Automated Testing

Listing 7-10 shows a single test case. It is annotated with @Test.

Listing 7-10  The updateCustomer test case

 @Test

 public void updateCustomer() {

 int id = 2;

 String newLastName = “Vonnegut”;

 try (CustomerDataAccess cda = new CustomerDataAccess()) {

 cda.open(AbstractBusinessAccess.OpenMode.rw);

 CustomerDto dto = cda.getCustomer(id);

 assertNotNull(dto);

 dto.setLastName(newLastName);

 assertTrue(cda.updateCustomer(dto));

 }

 try (CustomerDataAccess ada = new CustomerDataAccess()) {

 ada.open(AbstractBusinessAccess.OpenMode.read);

 CustomerDto dto = ada.getCustomer(id);

 assertTrue(dto != null);

 assertEquals(newLastName, dto.getLastName());

 }

 }

This test reads a particular customer, changes the last Name, and then rereads it to
verify the change has been performed. In the next section, we’ll look at testing our ap-
plication end-to-end.

Testing the Application End-to-End
We have been working our way through, testing the different layers of our application.
We are now going to create some integration tests that actually test the entire application
end-to-end. These tests are going to start up our CreditService web front end, make HTTP
calls, and then verify that the expected results come back.

To make this easier, we are going to use a testing library named REST Assured. This
does all the heavy lifting of calling our REST end-points and validating the responses.
Before we can use REST Assured in the CreditService project, it must be added as a
dependency to the pom.xml for the project.

Listing 7-11 shows just the new dependency added to pom.xml for REST Assured. There
is no version number for this dependency because the Spring Boot plugin in this project
will work out the appropriate version based on the version of Spring we are using. The
scope of the dependency is test, which means the dependency is not included in the jar
file for distributing the application; Maven uses it only when running the application tests.

00_COBOL2_AM.indb 12000_COBOL2_AM.indb 120 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the Application End-to-End    121

Listing 7-11  The REST Assured dependency

 <dependency>

 <groupId>io.rest-assured</groupId>

 <artifactId>rest-assured</artifactId>

 <scope>test</scope>

 </dependency>

As with the earlier sets of tests in this chapter, we need some test data. We are creat-
ing integration tests that make sure all parts of the application function as expected when
put together at run-time.

In the tests we used for the BusinessInterop and BusinessRules layers, we started with
empty data files and added a few records for testing. And then, in the previous section, we
copied some data files with a known set of records as the data for running the tests. We
are repeating this approach here, and as before, we’re going to copy the data as part of
the setup for every single test case so that test cases can be run individually and so that
we don’t build dependencies between our test cases.

The test data is stored as part of the CreditService, under src/test/resources. You can
see three files: account.testdat, customer.testdat and transaction.testdat.

The test suite itself is under src/test and is in package com.mfcobolbook.creditservice.
webservice. It consists of four classes:

	■ WebserviceAccountTests

	■ WebserviceCustomerTests

	■ WebserviceTransactionTests

	■ WebserviceStatementTests

Listing 7-12 shows a fifth class (import statements are omitted to save space), WebSer-
viceApplicationTests, which contains all the common setup code used by the other tests.

Listing 7-12  The abstract test class

package com.mfcobolbook.creditservice.webservice;

public abstract class WebserviceApplicationTests {

 private static boolean hasInitialized = false;

 public static void setup() {

 if (!hasInitialized) {

 SpringApplication application =

 new SpringApplication(WebserviceApplication.class) ;

 RestAssured.port = 8088;

 application.run(new String[] {});

00_COBOL2_AM.indb 12100_COBOL2_AM.indb 121 4/19/21 5:08 PM4/19/21 5:08 PM

122  Automated Testing

 hasInitialized = true;

 }

 }

 protected void initTestData() throws IOException {

 copyDataResource(“account.testdat”, “dd_ACCOUNTFILE”);

 copyDataResource(“customer.testdat”, “dd_CUSTOMERFILE”);

 copyDataResource(“transaction.testdat”,

 “dd_TRANSACTIONFILE”);

 }

 private void copyDataResource(String source, String target)

 throws IOException {

 URL url = WebserviceApplicationTests.class.getClassLoader()

 .getResource(source);

 String path = url.getPath();

 assertNotNull(String.format(

 “No resource found for %s”, source), path);

 Path sourcePath = new File(path).toPath();

 String environmentValue = System.getenv().get(target);

 assertNotNull(String.format(“No value found for %s”, target),

 environmentValue);

 assertNotNull(sourcePath);

 File targetFile = new File(environmentValue);

 Files.copy(sourcePath, targetFile.toPath(),

 StandardCopyOption.REPLACE_EXISTING);

 }

}

The static setup() method starts the WebserviceApplication test and sets the port
REST Assured will use to connect to the webserver to 8088. If you look at the application.
properties file in src/test/resources, it contains the line:

server.port=8088

This is different to the default port (8080) on which the application usually runs. It means
we can run the tests even when the application is already running in a separate process;
two processes can’t listen on the same port.

This abstract class also has two helper methods, initTestData() and copyDataRe-
source(), that copy the .testdat files over the .dat files used for running the test cases.
These are called by the setup methods in the subclasses. All of the methods in this class
are called by the subclasses that contain the test cases.

Listing 7-13 shows the start of the class that has the tests for the Accounts controller. It
is annotated with @RunWith(SpringRunner.class) and @SpringBootTest. These annotations
make sure that the spring context is loaded before the tests are run.

00_COBOL2_AM.indb 12200_COBOL2_AM.indb 122 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the Application End-to-End    123

Listing 7-13  The start of the WebserviceAccountTests class

package com.mfcobolbook.creditservice.webservice;

@RunWith(SpringRunner.class)

@SpringBootTest

public class WebserviceAccountTests extends WebserviceApplicationTests {

 private static final String ID = “id”;

 private static final String CUSTOMER_ID = “customerId”;

 private static final String BALANCE = “balance”;

 private static final String CREDIT_LIMIT = “creditLimit”;

 private static final int CUSTOMER_ID_DATA = 300;

 private static final float BALANCE_DATA = 5432.0f;

 private static final byte TYPE_DATA = ‘C’;

 private static final float CREDIT_LIMIT_DATA = 10000.00f;

 private static final BigDecimal BIG_DECIMAL_ERROR =

 new BigDecimal(.001);

 @BeforeClass

 public static void setup() {

 WebserviceApplicationTests.setup() ;

 }

 @Before

 public void initTestData() throws IOException {

 super.initTestData();

 }

There are two methods in this excerpt of the test class. The static setup() method is
annotated with @BeforeClass. This annotation ensures that the method is called only once,
the first time the class is loaded by the test runner. This calls the setup() method from
Listing 7-12 that starts the application. We want to do this only once for the test cases in
a class because it is a comparatively expensive (slow) operation.

The initTestData() method is annotated with @Before so it will get called before every
single test case. This calls the method in the superclass that reinitializes the test data to
a known state. This doesn’t slow the test cases by very much and it gives us the benefit
that all the tests can be completely independent of each other.

00_COBOL2_AM.indb 12300_COBOL2_AM.indb 123 4/19/21 5:08 PM4/19/21 5:08 PM

124  Automated Testing

Listing 7-14 shows a single test case from this class. It is annotated with @Test, which
tells JUnit that this method is a test case. The code inside the method is a test using REST
assured.

Listing 7-14  A single REST controller test case

@Test

public void shouldLoadAccount() {

 when().get(“/service/account/1”)

 .then().assertThat()

 .body(ID, equalTo(1)).body(CUSTOMER_ID, equalTo(1))

 .body(BALANCE, equalTo(989.99f))

 .body(CREDIT_LIMIT, equalTo(3000.00f));

 }

when() is a static method of the RestAssured class that returns a RequestSender
object. The get() method sends an HTTP GET request on the specified URL to the Web
Server. The remainder of this statement enables us to assert that there are certain things
we expect to see in the body of the response. REST Assured is clever enough to unpick
the JSON response from our application and check the fields contain the expected values.
ID, CUSTOMER_ID, BALANCE, and CREDIT_BALANCE are static final Strings with the names
of the fields (you can see them defined at the start of Listing 7-13).

That’s a very simple test that just does a GET. Listing 7-15 shows a slightly more com-
plicated test that does a POST. This test creates an AccountForm object and then adds it
as a new account by posting to the /service/account path in the application.

Listing 7-15  A test that does a POST

@Test

public void shouldAddNewAccount() {

 AccountForm account = new AccountForm(new AccountDto(0,

 CUSTOMER_ID_DATA, new BigDecimal(BALANCE_DATA),

 TYPE_DATA, new BigDecimal(CREDIT_LIMIT_DATA)));

 given().body(account)

 .headers(Collections.singletonMap(“Content-Type”,

 “application/json”))

 .when().post(“/service/account/”).then().assertThat()

 .statusCode(equalTo(200)).body(ID, equalTo(22))

 .body(CUSTOMER_ID, equalTo(CUSTOMER_ID_DATA))

 .body(BALANCE, equalTo(5432))

 .body(CREDIT_LIMIT, equalTo(10000));

 try (RunUnit<AccountDataAccess> ru = new RunUnit<>(

 AccountDataAccess.class)) {

00_COBOL2_AM.indb 12400_COBOL2_AM.indb 124 4/19/21 5:08 PM4/19/21 5:08 PM

	 Testing the Application End-to-End    125

 try (AccountDataAccess accessor = (AccountDataAccess) ru

 .GetInstance(AccountDataAccess.class, true)) {

 accessor.open(AbstractBusinessAccess .OpenMode.read);

 AccountDto dto = accessor.getAccount(22);

 assertNotNull(dto);

 assertThat(dto.getCustomerId(),

 equalTo(CUSTOMER_ID_DATA));

 assertThat(dto.getBalance(),

 closeTo(BigDecimal(BALANCE_DATA),

 BIG_DECIMAL_ERROR));

 assertThat(dto.getCreditLimit().intValue(),

 equalTo((int) CREDIT_LIMIT_DATA));

 }

 }

}

This tests starts with the given() method (another static method of the RestAssured
class), sets up the body we wanted posted, together with the headers that inform the ap-
plication the data will be in json format, and then posts the request. As with the other test
case, it makes some assertions about the expected response from the Web server. It also
has a second part where it uses the AccountDataAccess interoperation layer to read back
the information posted to see whether it has actually been stored.

The style of programming for REST Assured might look unusual if you haven’t seen it
before. REST Assured uses a fluent interface; each method invocation returns an object
of the type that will be useful for the next part of the operation so that your code looks like
it is written in paragraphs of (slightly stilted) English. This makes the code easy to read
and easy to compose.

The paragraphs you write for REST Assured follow a paradigm known as Behavior
Driven Development (BDD). BDD is an extension of Test Driven Design (TDD). In TDD, you
write the test cases first, then write application code that enables the test cases to pass.

In BDD, the desired behavior is provided as a specification that can be executed as a
test against the code you write to provide that behavior. These integration tests are fol-
lowing a pattern of GIVEN x WHEN y THEN z. The REST Assured library is designed to
enable us to write tests that follow this format.

To run the CreditController tests:

1.	 Import the CreditService project into the workspace.

2.	 Click Run > Run Configurations, select JUnit Test, and then click the
New icon.

3.	 Set the name to CreditServiceTests and then click the Browse button to
select the CreditService project Test Project.

00_COBOL2_AM.indb 12500_COBOL2_AM.indb 125 4/19/21 5:08 PM4/19/21 5:08 PM

126  Automated Testing

4.	 Set the Test runner field to JUnit 4.

5.	 Click the Environment tab and then add three environment variables:
dd_ACCOUNTFILE =
 application-download//CredtiService/testData/account.dat
dd_TRANSACTIONFILE=
application-download//CredtiService /testData/transaction.dat
dd_CUSTOMERFILE=
application-download//CredtiService /testData/customer.dat

Do not set these environment variables to the files where your “production” data
(generated in Chapter 5) is stored. These files are replaced by the .testdat files in
the test resources at the start of every test case.

6.	 Click Run.
You should see 23/23 tests pass in the Eclipse JUnit pane. You will also see the
Spring Boot banner and startup output scrolling in the console as the Spring
Boot application for the web server starts up for each class in the test suite.

You have now run an integration test suite that has tested our entire application from
end-to-end.

 Summary
In this chapter, we used MFUnit to test procedural COBOL code and JUnit to test COBOL
JVM code and Java code. The JUnit tests for the Java REST service were integration tests
that used REST Assured to call our Web service through HTTP and because they did not
use any mock objects, they called all the way to the back end.

Although it is desirable to have unit tests as well as integration tests to provide more
in-depth code coverage of edge cases, we didn’t do that here because it is difficult to
mock out COBOL components. However, other ways of structuring the application would
make this easier. For example, if we had based the InteroperationLayer around interfaces
rather than classes, it would be easier to replace everything from the interoperation layer
with a set of dummy objects or mocks for testing. We haven’t done that here because it
would have complicated the example, but when modernizing applications or building new
ones, we should always consider designing for testability.

As we begin changing our legacy code in the following chapters, even the limited test
suite built for this book will give us confidence that the application is continuing to behave
as we want it to.

00_COBOL2_AM.indb 12600_COBOL2_AM.indb 126 4/19/21 5:08 PM4/19/21 5:08 PM

127

C H A P T E R 8

User Interface
Modernization

In this chapter, you will learn about creating user interfaces (UI) for COBOL applications,
including:

	■ UI Choices

	■ The Credit Service UI Application

	■ Creating Web UIs with the React Javascript library

UI Choices
COBOL applications are often associated with old-fashioned “green-screen” user inter-
faces that are text heavy and have no graphics. In the 1960s and 1970s, these were run
on dedicated IBM 3270 terminals; since the 1980s, terminal hardware has been gradually
replaced by software emulators that run on PCs.

These days, there are lots of choices for updating the user interface for a COBOL
application. The old 3270 console screens have now mostly been replaced by Web
interfaces, often using software that automatically converts the screen maps.

Remapping a console interface to Web pages can extend its usefulness as it can now
be accessed from a browser, but this isn’t really modernization in the sense of provid-
ing new paradigms for communicating with the old functionality. In this chapter, we are
going to look at how modernizing the back end of our application (by providing it with a
REST API) enables us to create a completely new front-end that communicates with the
new API. Specifically, we are going to look at the type of UI known as the “single-page
Web application.”

00_COBOL2_AM.indb 12700_COBOL2_AM.indb 127 4/19/21 5:08 PM4/19/21 5:08 PM

128  User Interface Modernization

We are not going to look at traditional desktop UIs in this chapter. As Web interfaces
have become faster and more capable, there are fewer and fewer use cases that require
building a dedicated UI program that runs on a computer’s desktop (as opposed to in
a Web browser). Web applications have a lot of advantages over desktop applications:

	■ The end user doesn’t need to install anything.

	■ The application developer can deploy a new version by updating the website (no
action is required by the end user).

	■ It is much easier to carry out canary or blue-green deployments so that new releases
can be staged gradually.

	■ Most enterprise applications rely on data stored centrally; Web applications are naturally
client-server, with the Web browser and Web server handling communication.

The only applications that are still better suited for the desktop than the Web are those
that that require very low latency combined with high computational requirements; image
and video editing is still mainly done on the desktop, although there are Web versions of
these types of applications, too.

Singe-Page Web Applications
Single-page Web applications are increasingly common these days. Google docs, Outlook.
com, and Facebook are all examples of single-page Web applications. They are different
from older styles of Web programming in that the user never loads a “new” page into the
Web browser as they proceed through the application.

Instead, they download a single page that renders different content through Javascript
manipulation of the Web browser’s Document Object Model (DOM) The JavaScript is
regularly sending and fetching data to and from a Web browser, to either update what the
user sees or to save new information back to the Web server.

Figure 8-1 shows the basic flow of operation of a single-page Web application.

1.	 The user’s Web browser requests the application from the Web server.

2.	 The Web server sends the page requested back and the page, in turn, requests
the Javascript files that contain all the UI logic.

3.	 The Javascript manipulates the DOM, controlling the content rendered and
shown to the user.

4.	 The Javascript can request further data from the Web server or post data back,
depending on the user’s interactions with the rendered content.

00_COBOL2_AM.indb 12800_COBOL2_AM.indb 128 4/19/21 5:08 PM4/19/21 5:08 PM

	 UI Choices    129

WebServer

index.html
app.js

https://myapp.mfcobolbook.com

Figure 8-1  Single-page Web application

A single-page Web application has a different architecture to older-style Web applications
like JSP (Java Servlet Pages) and ASP (Active Server Pages, which is the .NET equivalent
to JSP). In these applications, the server generates the HTML the user sees before sending
it down. Some user actions cause the server to send down a different page, which causes
the browser display to refresh. Even when these applications are running well over low-
latency connections with good bandwidth, this continual re-rendering gives a subjective
impression that the application is not as responsive as a desktop application.

Javascript is an interpreted rather than a compiled language; the source code written by
the developer can be executed exactly as it is by a Web browser. This can make the actual
code for Javascript applications quite large compared with a binary format. Every byte in
a Javascript application has to be downloaded to a Web browser before the application
can run, whereas traditional Web applications download only one page at a time.

To minimize download and startup times, single-page Web applications are usually put
through a build process that will, among other things, minify the Javascript. This removes
all unnecessary whitespace and shortens function and variable names to one or two char-
acters. The resulting Javascript is unintelligible to a human reader but is interpreted by the
browser in exactly the same way as the original.

Single-page applications can still sometimes take longer to render the first page (even
when minified, there can be a lot of code to download), but after that, all interactions feel

00_COBOL2_AM.indb 12900_COBOL2_AM.indb 129 4/19/21 5:08 PM4/19/21 5:08 PM

130  User Interface Modernization

smoother because only changed sections of the page are rendered – much like a desktop
application.

Single-page applications also have the benefit of forcing a clear separation between
server logic for saving, retrieving, and manipulating data and the UI logic for presenting it
to the user. A single-page application is dependent on access to a REST API for all the
functions that are provided by the back-end server; this, in turn, helps developers of the
Web services adopt an API-first approach where they think about building a consistent and
simple API for consumption by other clients. Once you start adopting an API first approach,
other possibilities open up; the same service can be consumed by a UI application or by
another microservice.

There are a lot of common functions needed to write single-page applications (for
example, to fetch or post data, to display dialog boxes on the Web page, and so on). Not
all Web browsers have identical capabilities, so handling this in your application code is
not straightforward.

Consequently, there are several Javascript libraries and frameworks to smooth out the
differences between various browsers and versions and to provide the application developer
with a consistent set of functions and semantics to help create a polished experience
without having to write a lot of low-level code.

At the time of writing, two of the most popular frameworks are React (developed by
Facebook) and Angular (developed by Google). Both are open-source which means you
can use them without paying license fees. Both frameworks are very capable and make it
possible to create complex applications.

Angular provides more functionality out of the box but is also more complex to learn. For
this book, we’ve chosen React because it is quicker to get started with.

Javascript for Desktop Applications
Although we’re concentrating on applications for the Web, Javascript is also being
used to build desktop applications using frameworks like Electron. It’s very easy
to create cross-platform applications with Electron because the same code can
be run on Windows, MacOS, or Linux.

The Credit Service UI Application
The application consists of a React front-end named credit-service-form and the Credit
Service application we have been looking at over the last few chapters. The React front-
end and the Credit Service application run on different Web servers. The architecture
now looks like Figure 8-2. The interactions are similar to our previous diagram, but now

00_COBOL2_AM.indb 13000_COBOL2_AM.indb 130 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Credit Service UI Application    131

the Javascript communicates with the CreditService Web service instead of the server
that supplies the form.

index.html

https://myapp.mfcobolbook.com

3

app.js

4 1 2

CreditService credit-service-form

Figure 8-2  CreditService and credit-service-form

This is a common pattern with single-page applications, as the Web server that supplies
the back-end REST API is doing a very different job to the Web server that hosts the UI
application for download to the client. The REST API must be hosted on an application
server that is running application logic, connecting to databases, and that must also be
secure from unwanted intrusion.

The Web server hosting the UI has to supply only some static content to a Web browser.
In the case of Web sites with high demand, this Web server might be hosted by a third-
party Content Delivery Network (CDN). Alternatively, the application owners might use
a high-performance server like Nginx to serve up the static content for the UI and a Java
Web server for the REST service. The different parts of the application will almost certainly
have different scaling needs.

In the next section, we’ll download and start up the application.

00_COBOL2_AM.indb 13100_COBOL2_AM.indb 131 4/19/21 5:08 PM4/19/21 5:08 PM

132  User Interface Modernization

Running the Application
We’ve provided two different versions of the application in this chapter:

	■ A worked example that takes you through some changes you need to make to get
the entire application working.

	■ A complete example that shows you the finished code.

React uses the Node Package Manager (NPM) to fetch all the Javascript dependencies
needed to make React applications run. Before you start, you need to install Node.js on
your computer. At the time of writing, you can download Node.js from https://nodejs.org/
en/download/. This page provides an installer for Windows; to install on Red Hat or SUSE,
follow the links for installing using a package manager.

Once you have installed Node.js, start the credit-service-form application by following
these steps:

1.	 Download the examples for Chapter 8.

2.	 Open a command prompt or terminal and then change to the
worked\credit-service-form directory in the Chapter 8 examples download.

3.	 This directory contains the sources for the credit-service-form application,
but you must install the React modules before it will run. Type the command:
npm install
It will take a couple of minutes for all the dependencies to download, but
eventually you should see a message indicating the number of packages that
have been downloaded.

4.	 You can now run the application in development mode. Type the command:
npm start
Node.js includes its own Web server, which deploys the application and starts
your default Web browser on http://localhost:3000.

Your Web browser should display something similar to Figure 8-3. No data is displayed
because, at the moment, there is no server application running for it to get the data from.

Figure 8-3  The credit-service-form application

00_COBOL2_AM.indb 13200_COBOL2_AM.indb 132 4/19/21 5:08 PM4/19/21 5:08 PM

	 The Credit Service UI Application    133

To display some data, start up the Web server:

1.	 Import the BusinessInterop, BusinessRules and CreditService projects into
a new Eclipse workspace.

2.	 For the BusinessRules project and the BusinessInterop project, right-click
each project, click Properties > Builders, and then edit mvn_businessrules
for your local setup (as explained in the “Importing the Example Projects” section
in Chapter 5).

3.	 Create a Java Application Run Configuration and give it the name
CreditService. Set the Project field to CreditService and the main class to
WebserviceApplication. Then add environment variables dd_ACCOUNTFILE,
dd_CUSTOMERFILE and dd_TRANSACTIONFILE to point to the data files you
created in the “Generating Data” section in Chapter 5.

4.	 Click Run to run the application.

5.	 Open a browser tab and point it to http://localhost:8080/service/customer/1.
Provided the Web server started and the environment variables are set correctly,
some data should be returned.

6.	 On the browser tab where the React application is running credit-service-form,
click Refresh. It still shows no data. In your browser, open the developer tools
and look at the console. You will see an error similar to this:

Access to fetch at ‘http://localhost:8080/service/customer/’ from origin

‘http://localhost:3000’ has been blocked by CORS policy: No ‘Access-Control-

Allow-Origin’ header is present on the requested resource.

Browser Developer Tools
Most modern browsers include developer tools that help with debugging Web
applications. The developer tools include tabs showing page elements, a con-
sole, a Javascript debugger, and a network viewer. The tools are similar across
most browsers; Chrome, Edge, Firefox, and Opera can be opened with the
keyboard shortcut Ctrl+Shift+I.

Cross-Origin Resource Sharing
Web browsers do not allow Javascript to retrieve data from arbitrary addresses; by default,
Javascript can retrieve data from only the same host as the Javascript itself was served
from. The port is part of the hostname, so the browser treats localhost:8080 and local-
host:3000 as different hosts.

00_COBOL2_AM.indb 13300_COBOL2_AM.indb 133 4/19/21 5:08 PM4/19/21 5:08 PM

134  User Interface Modernization

This is to prevent cross-site scripting (XSS) exploits. For example, imagine you have
logged into an application that serves data from www.secureapplication.com. The
pages downloaded from this site enable you to access the secure data. But visiting
www.villainousbehavior.com downloads a page with some Javascript that also attempts
to access www.secureapplication.com using your credentials. To make these exploits more
difficult to execute, a browser will, by default, refuse to fetch data from one domain for a
script hosted from another domain.

To enable our React application to fetch data from our CreditService application, we
need to set a Cross Origin Resource Sharing (CORS) policy on CreditService. When a
script requests data from a different domain, the browser sends a request to that domain
to find out if this is permitted. If the server returns an Access-Control-Allow-Origin header
that matches the requesting domain, the browser will provide the data to the requesting
Javascript.

Spring Boot makes it relatively easy to set this policy for your application. To enable
CORS on CreditService:

1.	 Open the WebserviceApplication class in Eclipse.

2.	 Add the code in Listing 8-1 after the main() method.

3.	 Rebuild and restart the application.

Listing 8-1  Configuring CORS on the CreditService

 @Bean

 public WebMvcConfigurer corsConfigurer() {

 return new WebMvcConfigurer () {

 @Override

 public void addCorsMappings(CorsRegistry registry) {

 registry.addMapping(“/**”)

 .allowedOrigins(“http://localhost:3000”);

 }

 };

 }

This policy enables applications from http://localhost:3000 to access all URLs in the
CreditService application. You can also enable CORS policies on individual controllers
using a CrossOrigin annotation and you can use wildcard matching as well as exact names.
Consult Spring documentation for more information about CORS, WebMvcConfigurer
and REST services.

Now that you have added the new configuration to the CreditService, refresh the browser
tab with the React application; you should now see a list of customers down the left side
of the page. Click on a customer to see that customer’s balance and transactions (see
Figure 8-4).

00_COBOL2_AM.indb 13400_COBOL2_AM.indb 134 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    135

Figure 8-4  Application showing data

To stop the application, go to the command prompt where you started the application
with npm start and press Ctrl+C.

In the next section we will look at the React application in more detail.

Getting Started with React
In this section, we’ll take a closer look at the React code to get some understanding of
how the credit-service-form application interacts with the CreditService that provides the
data. This documentation outlines some React basics, but it isn’t a substitute for the React
documentation or a full React tutorial.

If you want to learn React and write your own applications, there is an excellent tutorial
on the React website (https://reactjs.org/tutorial/tutorial.html#setup-for-the-tutorial) or try
searching the Web for “React JS Tutorial.” There are also many online courses for React.

Development Environments for React
Eclipse as supplied with Visual COBOL doesn’t provide great functionality for working with
Javascript applications. There are some plugins that can help, but most of them require
commercial licensing. I recommend using Visual Studio Code for working with applications
like React. If you aren’t familiar with Visual Studio Code (not to be confused with Visual
Studio), it is a free code editor from Microsoft that can be installed on Windows or any of
the Linux desktop environments supported by Visual COBOL.

Visual Studio Code includes syntax highlighting and intellisense for Javascript applica-
tions, plus you can open the folder containing your application and navigate it using Visual
Studio Code’s Explorer. You can use any code editor of your choice to work through the rest
of this chapter, but Visual Studio Code is a good choice if you have no strong preference
already. You can download it at https://code.visualstudio.com or just search for “VS Code”
on the Web. Figure 8-5 shows Visual Studio Code after opening the folder containing the
credit-service-form application.

00_COBOL2_AM.indb 13500_COBOL2_AM.indb 135 4/19/21 5:08 PM4/19/21 5:08 PM

136  User Interface Modernization

Figure 8-5  Visual Studio Code view of credit-service-form

Structure of a React Application
Figure 8-6 shows the file structure of a React application (like credit-service-form). The
JS code for the application is in the src sub folder, while the main assets (an HTML page
and some icons) are in the public folder. Figure 8-2 showed the single HTML page that
is sent to the browser to render the application; that is index.html inside the public folder.

The package.json file is a list of dependencies and scripts for the application. The
package-lock.json looks like a more complicated version of package.json; it is the full list
of all the transitive dependencies needed to run the application. Do not edit this file by
hand, but do store it as part of the version control for an application. For more information,
see the React documentation.

The application directory is created as a local git repository and includes an appropriate
.gitignore file. This is the structure created when you run the command npx create-react-app my-
application. It is also located under credit-service-form when you download the examples
for this chapter.

When you ran the npm install command to start the application running earlier in the
chapter, NPM created a node_modules folder with all the dependencies needed to run
your application. Visual Studio Code understands the structure of a React application and
shows this in gray rather than white because you wouldn’t normally edit any of the files in
here or store them in your source code control system.

00_COBOL2_AM.indb 13600_COBOL2_AM.indb 136 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    137

Figure 8-6  Directory structure of credit-service-form application

The npm start application that runs the application starts a local instance of the Node
server on your computer and opens the application in your default Web browser. When
you make a change to the source code, npm automatically rebuilds the application and
the results are visible immediately in the browser.

This works very well when you are working on the application but is not so good for
publishing it on the Web because there are several Javascript files in the node-modules
directory, so the overall download size is large. The npm run build command creates a
compact minified version of the application in the build directory for distribution. This uses a
set of default tools for the build chain, but the React documentation explains how to create
your own build chain if you want more flexibility in how the application is built.

React Philosophy
Compared with Javascript frameworks like Angular, React is a relatively simple library that
is focused on making it easy to build the visual components of an interface. The learning
curve is not as steep, but you have to decide which other technologies and libraries to
include to build a fully functioning application.

Angular includes functionality to bind controls directly to server APIs; with React, you
can use other libraries to do this or you can do it yourself. React focuses on:

	■ Rendering the application visually

	■ Making it easy to manage state changes

	■ Handling events

Even handling forms controls is left to the programmer in React; this can lead to you writing
a lot of boilerplate code that doesn’t add any value to your application. However, React
has a rich ecosystem of libraries provided by other developers and vendors that enables
you to build elegant and robust applications.

00_COBOL2_AM.indb 13700_COBOL2_AM.indb 137 4/19/21 5:08 PM4/19/21 5:08 PM

138  User Interface Modernization

Dependencies for the credit-service-form Application
I am not a full-time Javascript developer, so I followed the line of least resistance to build
the credit-service-form, selecting some other well-known libraries to supplement React:

	■ Formik handles all the repetitive code otherwise needed to work with forms in React.
Formik is another library managed through NPM that I added to the application during
creation with the command npm install formik. Since Formik is already part of
credit-service-form, you don’t need to install it again. At time of writing, the home
page for Formik is https://jaredpalmer.com/formik/ and you can also download the
sources from github.

	■ Bootstrap provides a set of Cascading Style Sheets (CSS) that gives your
application a professional look and feel. Bootstrap (https://getbootstrap.com) also
includes some Javascript libraries to provide functionality like dialog boxes. At time
of writing, the home page for Bootstrap is https://getbootstrap.com. I didn’t actually
download Bootstrap to use it; credit-service-form includes references to Bootstrap
CSS and Javascript files on the index.html root page of the application, taking them
from a third-party Content Distribution Network (CDN). One of the advantages
of this approach is that because so very many websites use Bootstrap, there are
many opportunities for the library to be cached by your Web browser or by your
ISP, improving load times. Most CDNs also provide server nodes in many regions
across the globe, meaning that data provided by a CDN can often be supplied by
a server geographically close to a client located anywhere.

	■ The Fetch API used to connect the Javascript application to the REST API provided
by CreditService. The Fetch API is available in most modern browsers, although
not in Internet Explorer. I’ve assumed that all readers will have access to at least
one of Microsoft Edge, Chrome, Firefox, or Opera, all of which support Fetch. You
can check which versions of popular browsers support different API calls at https://
developer.mozilla.org. The Mozilla site also provides comprehensive documentation
on browser APIs available to developers.

If you need to support an older browser like Internet Explorer, you can often find “polyfill”
libraries that provide newer Javascript APIs for older browsers. For example, search the
Web for “javascript polyfill fetch.”

Application Components
Our React application consists of a few separate components, each of which is responsible
for rendering one part of the page shown in Figure 8-4. As shown in Listing 8-2, we will
start by looking at App.js, which is the main application file.

00_COBOL2_AM.indb 13800_COBOL2_AM.indb 138 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    139

Listing 8-2  The start of the App.js file

import React from “react”;

import “./App.css”;

import CustomerList from “./CustomerList.js”;

import AccountDetails from “./AccountDetails.js”;

import TransactionList from “./TransactionList.js”;

import RESTApi from “./RESTApi”;

function App() {

 return <MainPage value=”http://localhost:8080” />;

}

Listing 8-2 shows only the first few lines of this file. The import statements pull in the other
components for the application, which are defined in separate Javascript files. You do not
need to define each component in a separate file because Javascript doesn’t really have
any rules about this, but you should consider this approach because larger applications
are easier to work on when the code is logically organized into separate files.

The next statement defines a function called App(), which is the main entry point for the
application and is called when the index.html page is first loaded by the browser. It consists
of one statement, which might look a bit odd if this is your first encounter with React. The
value returned by the function is <MainPage value=”http://localhost:8080” />, which looks
closer to HTML than Javascript, especially because it is not quoted the way a string literal
would be. It is actually an extension to Javascript syntax called JSX, which enables you to
define how your application is rendered using React components. React components are
either predefined ones that correspond to HTML elements (for example, <p> or <h1>) or
they are components you define yourself. In this case, <MainPage> is a component defined
as part of the application. You can define a new React component either with a single
Javascript function with the same name as the component or as a Javascript class with
the same name as the component.

You do not have to use JSX when writing React applications; JSX is converted into plain
Javascript when you build a React application. The React documentation explains how
you can write this Javascript yourself instead of using JSX, but JSX makes it much easier
to understand and write React applications, so we will use JSX throughout this chapter.

Each React component in your application is instantiated as a Javascript object at
run-time, which contains two separate data objects: props and state. Each of these data
objects can consist of any number of fields, each of which can hold data or functions.

Anything declared inside a JSX element as an attribute is passed through to the com-
ponent as a field inside props. Figure 8-7 represents the MainPage element with the value
passed through to it in Listing 8-2.

00_COBOL2_AM.indb 13900_COBOL2_AM.indb 139 4/19/21 5:08 PM4/19/21 5:08 PM

140  User Interface Modernization

MainPage props.value=“localhost:8080” state

Figure 8-7  The MainPage element with props and state

The MainPage Component
Our MainPage component is defined inside App.js as the MainPage class, which extends
React.Component. React.Component provides all the base functionality for elements to render
and update. Listing 8-3 shows the render() function for MainPage, which is executed each
time it needs to be rendered on the page.

Listing 8-3  The MainPage render() function

 render() {

 return (

 <div className=”row”>

 <div className=”col”>

 <div>

 <h1>Customers</h1>

 <div>

 <CustomerList

 className=”container scrollable”

 value={{

 onCustomerSelected: x =>

 this.handleCustomerSelected(x),

 customerData: this.state.customerData

 }}

 />

 </div>

 </div>

 </div>

 <div className=”col”>

 <div className=”row”>

 <div className=”container”>

 <h1>Account details</h1>

 <p>Select a customer to see account details.</p>

 <AccountDetails value={this.state.accountData} />

 </div>

 </div>

00_COBOL2_AM.indb 14000_COBOL2_AM.indb 140 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    141

 <div className=”row”>

 <div className=”container”>

 <h1>Transactions</h1>

 <TransactionList value={this.state.transactionData} />

 </div>

 </div>

 </div>

 </div>

);

 }

}

The render() function returns JSX describing what should appear in the Browser.
It consists mostly of div and h1 elements, which will be rendered as HTML div and h1.
However, there are some differences between JSX and HTML – one of which is that the
HTML class attribute is replaced by className in JSX. Here we are using Bootstraps row
and col styles to provide a two-column layout for the page – customers down the left and
accounts and transactions down the right.

The render() function also returns three other JSX elements defined by the application:
CustomerList, AccountDetails, and TransactionList. Figure 8-8 shows the layout that will
be rendered by MainPage – the headings and the three components that make up the
application itself.

<h1>Customers</h1> <h1>Account Details</h1>

<h1>Transactions</h1>

TransactionList

AccountDetailsCustomerList

Figure 8-8  Layout of the MainPage element

Each of the components of the application receives a props.value that is part of the
application state of MainPage. The props being passed through to each component define
the data that those components will actually display in their render methods.

00_COBOL2_AM.indb 14100_COBOL2_AM.indb 141 4/19/21 5:08 PM4/19/21 5:08 PM

142  User Interface Modernization

This is a typical pattern for React applications. A higher-level component will pass data
to lower-level components for rendering. When the data to be rendered changes, an event
sent to the parent component will trigger the setState() function on the component. The
setState() function enables you to change the state of the component and also triggers
the render() function, causing the component and all of its children to be rerendered with
the new data. Listing 8-4 shows the MainPage class minus the event handler and render
functions.

Listing 8-4  The MainPage class

class MainPage extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 customerData: null,

 customerId: null,

 accountData: {

 id: “”,

 customerId: “”,

 balance: 0.0,

 type: “”,

 creditLimit: 0.0

 },

 transactionData: []

 };

 this.RESTApi = new RESTApi(props.value);

 this.accountFetched = this.accountFetched.bind(this);

 this.accountFetchFailed = this.accountFetchFailed.bind(this);

 this.transactionsFetched = this.transactionsFetched.bind(this);

 this.transactionsFetchFailed = this.transactionsFetchFailed.bind(

 this

);

 }

 componentDidMount() {

 fetch(this.RESTApi.serviceUrl(“service/customer”))

 .then(response => {

 return response.json();

 })

 .then(myJson => {

 this.setState({ customerData: myJson.array });

 });

 }

00_COBOL2_AM.indb 14200_COBOL2_AM.indb 142 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    143

 // Event handlers omitted from listing

 . . .

 // render() function omitted from listing

 . . .

}

The constructor receives a single parameter, props, which contains the data passed
into the component (see Listing 8-2, where the only data passed in was the URL for the
REST application). The constructor passes this to the superclass and then defines the
props object for the component. This has fields for customer, account, and transaction data,
which are all set to “empty” values. But we want to display actual data fetched from the
REST API. This is done by the componentDidMount() function. React.Component defines an
empty implementation of this, which the MainPage class overrides. React calls this function
after a component is loaded and rendered.

It has been overridden here to call the REST API using fetch() to retrieve the entire list
of customers. The lambdas defined inside the then() method calls are executed as each
previous operation is completed. The final lambda calls setState() to update MainPage
props with the array of customers that has been retrieved. Because the props of MainPage
has been changed, the render() function is called and the CustomerList component now
gets the list of customers to render.

The fetch() function itself is asynchronous; because accessing resources over HTTP is
comparatively slow, fetch() returns before the HTTP network call has actually completed;
this function does not actually return with the data you are interested in. What you get back
is an object called a promise.

Each promise.then() function takes a lambda – effectively a function that will be executed
later, when the HTTP call has completed and the promise can be fulfilled.

If you are unaccustomed to asynchronous programming, this style of programming can
be a little confusing to begin with. Figure 8-9 shows the sequence of events – component-
DidMount() is executed, initiates the fetch, and provides lambda functions to the promises
returned by the fetch() and then() functions. Then when the executions represented by
the promises complete, the lambda code is executed.

00_COBOL2_AM.indb 14300_COBOL2_AM.indb 143 4/19/21 5:08 PM4/19/21 5:08 PM

Later, when the HTTP reponse has been received

lambda1 (/*read the json from the response stream */)

1

2

ComponentDidMount() {
fetch(service/customers)

}.then(/*create lambda 1*/)
.then (/*create lambda 2 */)

lambda2 (/*set the state of MainPage using the json */)

Later, when the HTTP stream has been read

Figure 8-9  Asynchronous code execution

The CustomerList Component
The CustomerList component actually renders a list of customers on the browser and is
defined inside CustomerList.js, together with a Customer component (which renders an
individual customer). Listing 8-5 shows the CustomerList component.

Listing 8-5  The CustomerList component

class CustomerList extends React.Component {

 customerSelected(customerId) {

 if (this.props.value.onCustomerSelected) {

 this.props.value.onCustomerSelected(customerId);

 } else {

 console.debug(

 “No onselected handler provided to CustomerList”

);

 }

 }

 render() {

 const customers = [];

 if (this.props.value.customerData) {

 this.props.value.customerData.map((x, index) =>

 customers.push(

 <Customer

 key={index}

 value={{ customer: x, index: index }}

00_COBOL2_AM.indb 14400_COBOL2_AM.indb 144 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    145

 onClick={() => {

 this.customerSelected(x.id);

 }}

 >

 </Customer>

)

);

 }

 return <div className=”scrollable”>{customers}</div>;

 }

}

If you look at Listing 8-3 again, you can see that CustomerList gets passed a props.
value object with fields customerData and onCustomerSelected. The customerData field is
expected to be an array of customer objects. The render() code uses the Javascript map()
function, which iterates over the array invoking the supplied lambda function with each
element and element index.

This is used to create an array of Customer elements. Each Customer element has a
props object that defines the index in the array, the data for one customer, and an onClick
function handler that will call the customerSelected() function of CustomerList.

Customer itself is defined by the Customer() function also in CustomerList.js and shown
in Listing 8-6.

Listing 8-6  The Customer function

function Customer(props) {

 return (

 <div

 className={

 “padded highlightable row “ +

 (props.value.index % 2 === 0 ? “grey” : “white”)

 }

 onClick={props.onClick}

 >

 <div className=”padded col”>{props.value.customer.id}</div>

 <div className=”col”>{props.value.customer.firstName}</div>

 <div className=”col”>{props.value.customer.lastName}</div>

 </div>

);

}

This is the other way of defining a renderable element in React – by providing a render
function with the name of the component. This function uses the customer object passed
in as part of the props to display the id, first name, and last name in three columns; the

00_COBOL2_AM.indb 14500_COBOL2_AM.indb 145 4/19/21 5:08 PM4/19/21 5:08 PM

146  User Interface Modernization

onclick handler will be called every time the row is clicked. It also uses styles grey and
white (defined in the App.css file) to provide the alternate shading for each row (even rows
are grey and odd rows are white).

The Remaining Components
By now you should be starting to get a feel for how the application works (built out of
components which are passed down data from MainPage). When you click on a customer,
the event goes the other way, up from the Customer component, via the CustomerList, until
finally triggering the MainPage.handleCustomerSelected(). This uses functionality in the
RESTApi class (RESTApi.js) to fetch the related account and the related list of transactions.

You can examine the code in AccountDetails.js and TransactionList.js to see how the
rest of the application works. In the next section, we will extend the application functionality
to enable us to add new customers.

Extending the Application
In this section, we will create an AddCustomerForm component, which is a modal dialog that
enables us to add new customers. Use the codebase in the Chapter 8 worked example to
do this. If you want to see the finished application, it is in the Chapter 8 complete example.

To make this work, we need to add the following items to the application:

	■ A button to display an Add Customer form

	■ An AddCustomerForm dialog box component

	■ New event handlers:

	■ To toggle display of the dialog box on and off

	■ To handle the user clicking Save on the dialog box

	■ Code to POST the new user details back to the REST API

In the next few sections, we will add the new code to our UI application. We’ll take advantage
of the fact that React enables us to edit the application while it is running in the NPM
development server, so as we make changes, you will see the running application change.
To make it easier to find the places where new code should be added, there are comments
in the application Javascript files that start “Step 1”, “Step 2”, etc.

The Add Customer Button
Start both the UI application (credit-service-form) and the COBOL back end
(CreditService) as explained previously in this chapter in the “Running the Application”

00_COBOL2_AM.indb 14600_COBOL2_AM.indb 146 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    147

section. As you change the React code, the UI will update, showing your changes. And
if you make a mistake, error messages will indicate what’s wrong – both in the command
prompt where you are running npm start and the Web browser. Figure 8-10 shows the
Add New button.

Figure 8-10  The Add New button

To add a button labeled Add New:

1.	 Open App.js in your editor of choice.

2.	 Find the MainPage render() function. At the moment, this function starts with
three <div> elements in succession. The first two use style classes to create
a row and column, respectively. The last div is a container for the Customers
heading and the CustomerList component (shown on the left side of Figure 8-8).
We are going to make this third div into another nested row and make the <h1>
and new <button> elements columns so that they appear next to each other.

3.	 Find the Step 1 comment just before <h1>Customers</h1>. Replace
<h1>Customers</h1> with the code in Listing 8-7.

4.	 Save your changes. NPM rebuilds your application and the changes display in
the Web browser. Any error messages will be displayed in the console where you
are running NPM as well as in the Web browser.

Listing 8-7  Code to render a button on the form

 <div className=”row”>

 <h1 className=”col”>Customers</h1>

 <button

 style={{ margin: 10 + “px”, height: 40 + “px” }}

 className=”col”

 onClick={this.toggleAddCustomerDlg}

 >

 Add New

 </button>

 <div className=”col” />

 </div>

00_COBOL2_AM.indb 14700_COBOL2_AM.indb 147 4/19/21 5:08 PM4/19/21 5:08 PM

148  User Interface Modernization

There is some extra styling added to the button to set its height and the distance between
it and other elements. There’s also an onClick handler, but the function it points to has not
been added yet, so clicking the button does nothing right now.

The AddCustomerForm Dialog
In this section, we add the code for the AddCustomerForm dialog. Since this is a new React
component, it is best to put it in its own separate source file.

1.	 Create a file called AddCustomer.js in the src directory of the credit-service-
form application.

2.	 Insert the contents of Listing 8-8 into AddCustomer.js and then save the file.

This file contains a single class, AddCustomerForm, which is a React.Component. The
import statements at the top pull in the React and Formik libraries as well as some extra
styles defined for the application in App.css. There is also an export statement at the end
that exports AddCustomerForm so it can be imported into other application files.

Listing 8-8  AddCustomer.js

import React from “react”;

import “./App.css”;

import { Formik, Field, Form } from “formik”;

class AddCustomerForm extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 customerData: null,

 show: props.show

 };

 this.hide = this.hide.bind(this);

 }

 hide() {

 this.setState({ show: false });

 }

 render() {

 if (!this.props.show) {

 return null;

 }

 return (

00_COBOL2_AM.indb 14800_COBOL2_AM.indb 148 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    149

 <div className=”modal-dialog modal-dialog-centered”>

 <Formik

 onSubmit={ (values)=>

 {

 this.props.service.postCustomer(values,

 this.props.success,

 this.props.failure);

 }

 }

 >

 <Form>

 <div className=”modal-content”>

 <div className=”modal-header”>

 <h5 className=”modalTitle”>Add New Customer</h5>

 <button

 type=”button”

 className=”close”

 data-dismiss=”modal”

 aria-label=”Close”

 onClick={this.props.onClose}

 >

 ×

 </button>

 </div>

 <div className=”modal-body”>

 <div className=”row”>

 <label className=”col”>First Name</label>

 <Field

 style={{ marginRight: 20 + “px” }}

 className=”col”

 type=”input”

 name=”firstName”

 value={this.props.firstName}

 />

 </div>

 <div className=”row”>

 <label className=”col”>Last Name</label>

 <Field

 style={{ marginRight: 20 + “px” }}

 className=”col”

 type=”input”

 name=”lastName”

 value={this.props.lastName}

 />

 </div>

 </div>

00_COBOL2_AM.indb 14900_COBOL2_AM.indb 149 4/19/21 5:08 PM4/19/21 5:08 PM

150  User Interface Modernization

 <div className=”modal-footer”>

 <button

 type=”button”

 onClick={this.props.onClose}

 className=”btn btn-secondary”

 data-dismiss=”modal”

 >

 Cancel

 </button>

 <button type=”submit” className=”btn btn-primary”>

 Save changes

 </button>

 </div>

 </div>

 </Form>

 </Formik>

 </div>

);

 }

}

export default AddCustomerForm;

The constructor at the top of the file passes the props up to the superclass and initializes
a props object with two fields: customerData and show. The customerData field contains
the input from the end user when the Save changes button is clicked. The show field is
Boolean; when true, the dialog is rendered and when false, it is not rendered. You can
see the render() function returns null when this.props.show is not true.

The dialog box itself is a <div> element styled with the Bootstrap modal-dialog and
modal-dialog-centered styles. Within this is a <Formik> element, which contains an onSubmit
event handler that will be triggered when the button marked as type=”submit” is clicked.
Most of the code for the modal dialog is taken directly from the Bootstrap example for a
modal dialog, but the <div> styled as modal-content is wrapped inside a <Form> control.
The <Field> elements are Formik components that take their value from the component’s
props and pass the values in them to the onSubmit handler.

The AddCustomerForm component has the code to render the dialog and to handle its
events, but we need to add it to the application page in order to display it. We will add to
the MainPage.render() function. When state.show==true, it will render, concealing the rest
of the page; when it is false, it will be invisible.

A render() function can only return a single root element, so to add the dialog to
MainComponent, we have to wrap both the new dialog code and the existing code inside a
single <div> element.

To add the form:

00_COBOL2_AM.indb 15000_COBOL2_AM.indb 150 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    151

1.	 Open App.js for editing.

2.	 Find the Step 2 comment near the top of the file and follow the instruction to
uncomment the import statement below it. This imports AddCustomerForm so that
we can refer to it from App.js.

3.	 Find the Step 3 comment at the top of the render() function and insert the code
in Listing 8-9 below it.

4.	 This code includes the start of a new <div> element that needs to be closed or
the application will no longer run. If you save the file now, you will see “Parsing
error: Unexpected JSX Contents”.

5.	 Go to the bottom of the render() method. Immediately below the comment that
starts Close div element..., add </div> and then save the file.

The code compiles, but the following warning displays: Comments inside children
section of tag should be placed inside braces. This is because by adding the closing
</div>, the comment is now part of JSX rather than Javascript. If you either delete the com-
ment or format it like the ones at the top of the render() method, the warning disappears.

Listing 8-9  Code to render AddCustomerForm on MainPage

 <div>

 <AddCustomerForm

 show={this.state.addCustomer}

 onClose={this.toggleAddCustomerDlg}

 success={(customer) => {

 this.toggleAddCustomerDlg();

 this.state.customerData.unshift(customer);

 this.setState({

 customerData: this.state.customerData,

 });

 }}

 failure={() => {

 alert(“Couldn’t add customer”);

 }}

 service={this.RESTApi}

 />

We now have all the code to render the form, but it still does not appear when the Add
New button is clicked. In the next section, we will add the event handler that makes this work.

00_COBOL2_AM.indb 15100_COBOL2_AM.indb 151 4/19/21 5:08 PM4/19/21 5:08 PM

152  User Interface Modernization

Adding Event Handlers
At this point, there is an Add New button and a new form, but the form doesn’t display
and we still can’t add a new customer. We now have to wire up the Add New button to an
event handler to make it work.

1.	 Look for the Step 4 comment in App.js, which is about a third of the way down
the file.

2.	 Insert the code in Listing 8-10 and then save the file.

Listing 8-10  Event handler to display and hide dialog

 toggleAddCustomerDlg() {

 this.setState({ addCustomer: !this.state.addCustomer });

 }

If you now click the Add New button, the following error displays in your browser:
TypeError: this is undefined. The toggleAddCustomerDlg() function is passed as a param-
eter to the onClick event-handler of the Add New button (and also to the AddCustomerData
form as part of its props for the onClose and Submit events). When toggleAddCustomerDlg()
actually gets executed, it has lost the this context it would otherwise have had as part of
the MainPage component.

To make it work, we need to bind the correct this context to the function so it is always
defined:

1.	 Find Step 5 inside the MainPage constructor function and uncomment the
specified lines.

2.	 Save the file.

Now when you click the Add New button, the dialog appears. Clicking either the Cancel
button or the Close button (the small x in the top-right corner) closes the dialog. Clicking
the Save Changes button displays the following error: this.props.service.postCustomer
is not a function. We’ll define this is in the next section.

Posting the New User Details to the Application
If you look back at the code in Listing 8-9, one of the values passed in as part of the props
for AddCustomerForm is service={this.RESTApi}. The RESTApi object defines all the func-
tions for communicating with the COBOL powered REST service that provides all the
back-end functions for this application. However, the AddCustomerForm tries to call a func-
tion postCustomer() when you submit the data (see Listing 8-8), but this doesn’t yet exist.

00_COBOL2_AM.indb 15200_COBOL2_AM.indb 152 4/19/21 5:08 PM4/19/21 5:08 PM

	 Getting Started with React    153

1.	 Open the RESTApi.js file.

2.	 Find the Step 6 comment and insert the code in Listing 8-11.

3.	 Save the file.

Listing 8-11  POST new customer to REST API

 /**

 * Call REST service to add a new customer in data.

 * succeeded and failed functions called depending on

 * success

 * @param {*} data

 * @param {*} succeeded

 * @param {*} failed

 */

 async postCustomer(data, succeeded, failed) {

 var url = this.serviceUrl(“service/customer”);

 const response = await fetch(url, {

 method: “POST”, // *GET, POST, PUT, DELETE, etc.

 mode: “cors”, // no-cors, *cors, same-origin

 cache: “no-cache”, // *default, no-cache, reload, force-cache, only-if-

cached

 headers: {

 “Content-Type”: “application/json”,

 },

 redirect: “follow”, // manual, *follow, error

 referrerPolicy: “no-referrer”, // no-referrer, *client

 body: JSON.stringify(data), // body data type must match “Content-Type”

header

 });

 if (response.status === 200) {

 succeeded(await response.json());

 } else {

 failed(data);

 }

 }

The postCustomer() function expects three parameters:

	■ The customer data itself (an object with firstName and lastName fields).

	■ A function to call whenever the POST is successful (the server returns HTTP status
200).

	■ A function to call whenever the POST fails.

00_COBOL2_AM.indb 15300_COBOL2_AM.indb 153 4/19/21 5:08 PM4/19/21 5:08 PM

154  User Interface Modernization

The success and failure functions are already defined as lambdas inside the props for the
AddCustomerForm element in Listing 8-9. If you now click Add New, fill in a first and last
name, and then click Save Changes, the application adds a new customer and saves the
details using the COBOL CreditService application.

You will also notice that the new customer appears at the top of the Customers list.
This is actually done inside the render() function of MainPage. The success lambda code
includes these statements:

 this.state.customerData.unshift(customer);

 this.setState({

 customerData: this.state.customerData,

 });

unshift() adds an item to the top of the customerData array in MainPage and
then setState() rerenders the component with the new data. If you refresh the page in
the browser after adding a new customer, the data will be reread from the REST service
and the new customer details display at the end (as it will be the last record in the file).

Summary
This chapter demonstrated that once you have converted a COBOL application into a REST
service, it is simple to fit a modern Web UI. Although this chapter used React, you can use
any technology that can make REST calls. In the next chapter, we will look at containerization
of the application and start refactoring the application to make it work better in the cloud.

00_COBOL2_AM.indb 15400_COBOL2_AM.indb 154 4/19/21 5:08 PM4/19/21 5:08 PM

155

C H A P T E R 9

Containerizing
COBOL Applications

In this chapter, we refactor the CreditService application so that it can be built and deployed
as a container. This is a stepping stone to deploying it in different cloud environments
(which you will learn about in the next chapter). Coming up:

	■ Containerizing Applications for the Cloud

	■ Changing from ISAM to a Database

	■ Running the Revised CreditService Application

	■ Containerizing the CreditService

Containerizing Applications for the Cloud
In this chapter, we are going to refactor the CreditService application to make it run well
“in the cloud.” To achieve this, we are going to:

	■ Refactor it to use a relational database rather than COBOL ISAM files

	■ Containerize it so that it is deployable from a single image that contains its
dependencies

Although you can run almost any application in a container, not every application in
a container is cloud-native. Cloud-native applications are those that best exploit the
capabilities of cloud computing. They have the following characteristics:

	■ Horizontally scalable — you can increase application capacity by adding more
instances

	■ Fast startup and shutdown

00_COBOL2_AM.indb 15500_COBOL2_AM.indb 155 4/19/21 5:08 PM4/19/21 5:08 PM

156  Containerizing COBOL Applications

	■ No reliance on local state

There is a worked example for this chapter that takes the now-familiar CreditService
application, with its COBOL (Visual COBOL), and Java projects for refactoring. Whether
you are using Windows or you are using Linux, you can follow all the examples until the
final major section of this chapter, “Containerizing the Application”. You will need a Docker
capable OS to be able to carry out the practical parts of this section.

You can install Docker on both SUSE and Red Hat Enterprise Linux. If you are using
Windows, you can install Docker Desktop (which will also enable you to follow the
containerization examples) as long as you have a Docker capable version of Windows.
The section “Install as a Docker Container” provides more information about which ver-
sions of Windows run Docker Desktop.

In the next two sections, we’ll discuss containers and cloud-native applications before
getting into the practical exercises.

What are Containers?
Containers started in the Linux world. A container is a way of isolating processes and
operating system resources (like a slice of the filesystem) inside a namespace. The contain-
erized process can access only the resources that have been shared inside its namespace.

You can build a container image for an application that contains all the application
dependencies and run that container on any OS that has a compatible container run-time.
They are called containers as an analogy to the steel shipping containers used to transport
freight throughout the world. Before standardized shipping containers, moving freight was
a labor-intensive process. To move freight onto trains and lorries for transport to its final
destination, several workers were needed to load the freight onto ships at one end and
then off-load it at the other end,

Standardized shipping containers enabled the use of standard machinery to move
containers on and off ships. Instead of the freight then being moved by hand into a lorry
or train, the container is simply fitted to a compatible trailer or carriage.

Thus, the time and labor required is reduced. Computer containers provide a similar
benefit.

Figure 9-1 shows three applications installed on a server, each application with differ-
ent run-time requirements: one needs Java 8.0, one needs Java 11, and one needs Dotnet
Core 2.3. Before you can install each application, you have to install its run-time. You also
need to make sure that each application is correctly configured to pick up the appropriate
run-time. Sometimes different applications depend on different versions of the same shared
libraries on the host OS, which adds even more complexity. (Windows programmers even
have a name for this: “DLL hell.”)

Just like moving the freight before shipping containers were introduced, installing
applications directly onto the OS can be labor-intensive and difficult to automate.

00_COBOL2_AM.indb 15600_COBOL2_AM.indb 156 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing Applications for the Cloud    157

Red Hat Enterprise Linux 7.8

exchange-rate-service loan-quotationscredit-service

OpenJDK 11.0 dotnet core 2.3OpenJDK 8.0

Figure 9-1  Applications running directly on a server

Figure 9-2 shows the same applications running inside containers. Each container
includes the application’s run-time dependencies, including an OS. (There are a number of
slimmed down Linux distributions available for building containers.) The only thing needed
on the host OS is the run-time to support the containers.

Each container is built from its own image stored on a container repository. Installing
the applications is now just a matter of starting the container from its image. To remove
an application and all its dependencies, just delete the container. Installing applications is
now straightforward and easy to automate. Containerization is one of the key technologies
that enables cloud-native computing.

Red Hat Enterprise Linux 7.8

exchange-rate-service

OpenJDK 11.0

Ubuntu linus

exchange-rate-container

credit-service

OpenJDK 8.0

Alpine linux

credit-service-container

loan-quotations

dotnet core 2.3

RHEL 8.0

loan-quotations-container

container run-time

Figure 9-2  Containerized applications

00_COBOL2_AM.indb 15700_COBOL2_AM.indb 157 4/19/21 5:08 PM4/19/21 5:08 PM

158  Containerizing COBOL Applications

Cloud-Native Applications
The term “cloud computing” has many possible meanings. We are going to talk specifically
about cloud-native applications and Platform-as-a-Service (PaaS). PaaS itself is a broad
category that covers vendor-specific offerings such as Amazon Elastic Beanstalk and
Microsoft Azure App service as well as open-source projects like Cloud Foundry. There are
commercially backed versions of the open-source projects as well, like Tanzu Application
Service (which is VMware’s implementation of Cloud Foundry).

Amazon Elastic Computer Cloud (EC2) was one of the first publicly available commercial
cloud offerings. EC2 provides Infrastructure-as-a-Service (IaaS). IaaS enables you to
provision servers “in the cloud,” but you are responsible for the server after you have
provisioned it. An EC2 server boots up with the OS of your choice, but after that it’s up
to you to manage it, install the software you want, keep it patched, and so on. In terms of
running applications, you still have the situation shown in Figure 9-1.

With PaaS, you provide the application and leave the platform to manage running it. It’s
much closer to Figure 9-2. With some PaaS systems, you provide the application code
and the platform builds a container for you; with others, you create the container image
and provide that to the platform.

Whether you are using PaaS or you are using IaaS, the basis of cloud computing is Virtual
Machines (VMs), which can be provisioned and started up very quickly. Networking is software-
defined; you can automate and version the way your servers and connectivity are created.

Figure 9-3 shows the relationship between hardware, IaaS, and PaaS. PaaS provides
a higher level of abstraction than IaaS, so you don’t have to do as much work, but the
environment is more constrained than IaaS. The VMs provided by IaaS aren’t that different
in terms of their capabilities than the physical servers; you can run almost anything that
the virtual hardware can support.

The convenience of PaaS comes at a cost of some flexibility; your applications will have to
follow some rules to be deployable on the platform. The specifics differ between platforms.

Physical Server

VM VM VM VM

container container container container

container container container

container container

Ia
aS

Pa
aS

Figure 9-3  IaaS and PaaS

00_COBOL2_AM.indb 15800_COBOL2_AM.indb 158 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing Applications for the Cloud    159

If you engineer an application to be “cloud-native,” it is likely to fit in with PaaS restrictions.
The changes we are going to make to Credit Service mean that it would run easily on a
number of cloud platforms (for example, Elastic Beanstalk or Azure App Service).

Cloud-native applications are sometimes referred to as “12 factor applications”, after the
list of principles outlined at https://12factor.net. We aren’t going to discuss all 12 factors
here, but we are going to get our application into a state where we can run and scale it on
the cloud. It’s been a few years since the 12 factors were first defined, so the very top tier
for cloud-native is now the “15-factor application,” but any application that meets the first
12 factors is well architected and should be easy to deploy on cloud platforms.

At the moment, our application stores all its data on the file system using COBOL ISAM
files. ISAM files are not always a good fit for cloud computing; it is difficult to scale the
data store on a file system across multiple instances of the application without running
into locking issues and contention.

We will refactor the application to use a database. (The fourth factor is “Treat backing
services as attached resources.”) This externalizes the data from the application instance
and makes it easy for many instances to share the same data. Relational databases have
been tuned and optimized over decades of development to work well when serving multiple
clients. ISAM can still provide good performance for data that is read-only or updated
infrequently.

The CreditService application is already well behaved in another way: it doesn’t maintain
any state between different invocations of the service. This makes horizontal scaling easy
because we can add new instances or delete existing ones at any time.

Application architectures that embrace the ephemeral nature of individual application
instances are key to maximizing the benefits of cloud computing. For example, being able
to scale up on demand keeps applications performant, and being able to scale down
keeps them cost effective.

When you accept that an individual instance might go away at any time (either because of
scaling down or some kind of failure), you design your system on that basis and it becomes
much more robust. For example, having more than one application instance (ideally run-
ning on different servers in different data centers) makes your application more resilient.

One of the functions in our CreditService is the monthly interest calculation. This is a
comparatively compute-intensive operation that carries out several high-precision decimal
arithmetic multiplications to calculate the result. Sending statements to all the customers
at the end of the month requires a lot of interest calculations. By making our application
horizontally scalable, we can run more instances at month-end when we have lots of
calculations to do. We then scale back down again when they are no longer needed.

00_COBOL2_AM.indb 15900_COBOL2_AM.indb 159 4/19/21 5:08 PM4/19/21 5:08 PM

160  Containerizing COBOL Applications

Microservice Architectures
Microservice architectures aim to solve some of the problems associated with older mono-
lithic styles of application. Monolithic applications often provide several services that are
tightly coupled and they are often large and complex to deploy. Consequently, they are not
updated very often – perhaps only once a quarter or once every six months. This means
it takes longer to introduce new features or patch security holes.

Microservice architectures break down monolithic applications into smaller services that
are loosely coupled and can be deployed independently of each other. For example, instead
of using a monolithic application to run a shopping website, you could have deployed a
service that manages and provides your catalog. A separate service runs the shopping
cart; a third service provides customer login and enrollment. Each service has different
scaling requirements, plus you might want to deliver new versions at different times.

In a monolithic application that manages all these functions in a single database, you
can only ever deliver the entire application at one time. That can be problematic when one
team has changes ready to go and another team is only part way through testing their new
functionality. You can only scale up or scale down the entire application at the same time.

By breaking the application into separate microservices developed by separate teams,
you make the dependencies clearer and easier to manage. Also, you can scale the shop-
ping cart up at busy times without needing to scale all your other services. Microservice
architectures encourage an “API-first” style of development whereby each microservice
aims to provide a simple and usable API. This has other benefits: it makes it easy to do
black-box testing on a service, and that, in turn, makes it easy to see when an API has
changed its contract.

Microservice architectures can be very effective, but they aren’t the best solution in every
case. For one thing, you get new complexities that don’t exist with monolithic architectures.
Microservices need to be able to communicate with each other and they need discovery
mechanisms to find each other. It’s often best to start out by making sure your monolith is
composed of well-structured and well-behaved modules with clear dependencies. Start
moving functionality into individual microservices when you need to address specific issues,
like scalability or speed of deployment.

Tools such as the Micro Focus Enterprise Analyzer can help you understand the com-
plexities of an existing application so that you can start breaking it into smaller pieces. Visual
COBOL Eclipse can also help you better understand the structure of your application and
programs through its built-in analysis and outline functionality.

Developing and deploying microservice architectures generally implies using a PaaS
that has good mechanisms for managing and orchestrating the individual containers. It’s
a big subject and beyond the scope of this book, so we won’t be discussing it any further
detail. For some introductory articles, search the Web for “Martin Fowler microservices.”
To better understand where the dividing lines between microservices are, look for books

00_COBOL2_AM.indb 16000_COBOL2_AM.indb 160 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    161

and articles about Domain Driven Design. The seminal work is “Domain-Driven Design:
Tackling Complexity in the Heart of Software” by Eric Evans. Although this book predates
microservice architectures, if you can identify the domains in your application, you can see
where the microservice boundaries should be.

In the next section, you will learn how to refactor the CreditService to get it to a point
where it is a cloud-friendly application.

Changing from ISAM to a Database
We are going to refactor the COBOL part of our application so that it uses a relational
database to store data instead of COBOL indexed files. This externalizes the storage
used by the application so that when it is deployed, we no longer have to consider the
disk location where the data will be stored. That is now the concern of the database. This
becomes important when we begin using containers for deployment.

It also makes it easier to scale the application horizontally because multiple instances of
the application can all connect to the same database. Although multiple COBOL processes
can read and write concurrently to shared files, it is difficult to make this solution perform
well. Micro Focus Fileshare can provide good performance for concurrent access, but this
is only supported for JVM COBOL if you use the native file-handler with your application.
The native file-handler cannot run in all the environments that the JVM application can run
in, however; for example, it’s not easy to bundle it into a containerized Java application or
run it from a Java Webserver.

For this chapter, we have taken the familiar Credit Service application and changed
all the file access code in the ACCOUNT-STORAGE-ACCESS program to Open ESQL
code that reads and writes database records. To run the samples in this chapter, you will
need to install PostgreSQL on your machine.

PostgreSQL
PostgreSQL is open source and has a license similar to the MIT open-source license. It is
a viable alternative to commercially licensed database servers. All examples in this chapter
were run using PostgreSQL Version 12, although they will probably work with versions at
least as far back as PostgreSQL Version 10. You can install Postgres directly onto your
host OS or you can install it as a Docker container.

If you want to install PostgreSQL as a container, you need to install Docker first. You can
install Docker on Linux or you can install Docker Desktop on some versions of Windows.
For more details, see the section entitled “Installing a Docker Container.”.

00_COBOL2_AM.indb 16100_COBOL2_AM.indb 161 4/19/21 5:08 PM4/19/21 5:08 PM

162  Containerizing COBOL Applications

Installing on Native OS
Download and installation instructions are at https://www.postgresql.org/download/.

For Windows, an installer program will guide you through installation and run the server
as a Windows service. It also prompts you to create a password for the root database
username of postgres.

For Linux, you must add the correct package repository and then install PostgreSQL
using your OS package manager. Instructions are included on the PostgreSQL site. After
installation, you will have to initialize the database, start the Postgres service, and then
set the password for the postgres user. On Linux installations, database authentication
defaults to the currently logged-in user for client access. Although this is more secure, it
is a little more complicated for use on a development system. The examples in this book
assume that we will always log in as postgres using a password we have set.

To change the authentication method, you need to edit the pg_hba.conf file located in
the PostgreSQL data directory and change the authentication method from peer to md5.
For more information, go to https://www.postgresql.org/docs/12/auth-pg-hba-conf.html.

md5 is the easiest method to set up for a development machine but it is no
longer considered secure. For a secure non-peer authentication method, use
scram-sha-256. You will have to update the password encryption in postgresql.
conf. See the PostgreSQL documentation for more information.

Installing as a Docker Container
Install Docker on your host OS first. For SUSE or Red Hat Enterprise Linux, follow the
product documentation for instructions. On Windows, you can install Docker Desktop from
https://www.docker.com. Documentation is located at https://docs.docker.com/docker-
for-windows/install/).

You can install Docker on versions of Windows 10 with the Hyper-V role enabled.
(Hyper-V is not available for Windows 10 home. However, you can install Docker Desktop
on Windows 10 Home using the Windows Subsystem for Linux 2 [WSL 2].) WSL 2 is
available on Windows 10 Version 2004 and later. See the Microsoft documentation for
more information about installing WSL 2. See the Docker documentation for information
about using Docker Desktop with WSL 2.

Once you have installed Docker on your OS, you can install PostgreSQL in a con-
tainer using the following command (this is a single command running across several lines
because the page isn’t wide enough):

docker run --name postgres-server

 -e POSTGRES_DB=application-db -e POSTGRES_PASSWORD=password

 -p 5432:5432 -d postgres:12.3

00_COBOL2_AM.indb 16200_COBOL2_AM.indb 162 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    163

This is what the command line means:

	■ run downloads and starts a container process.

	■ --name postgres-server provides the container with an easily identifiable name.

	■ -e POSTGRES_DB=application-db sets the environment variable POSTGRES_DB
to application-db. PostgreSQL creates an empty database with this name when
the container starts.

	■ -e POSTGRES_PASSWORD=password sets the environment variable
POSTGRES_PASSWORD. PostgreSQL sets the password for user postgres to
the value of this environment variable.

	■ -p 5432:5432 maps a network port (left of the colon) on the host OS to a port on
the container (right of the colon).

	■ -d runs the container in detached mode. Leave this switch off and it runs connected
to std in and std out in the console where it was started.

	■ postgres:12.3 is the name and version of the docker image to create the container.
By default, the image will be fetched from the Docker hub repository.

The database files are created inside the container file system, so if the container is
deleted, the data is lost. This is acceptable for running the example application, but if you
want to use a containerized database to store data permanently, you should mount a host
volume into the container for storing files. The documentation for this image (https://hub.
docker.com/_/postgres/) explains how to do this using the PGDATA environment variable
and -v command line switch.

The container gives you a PostgreSQL server, but you need to install the PostgreSQL
client tools on your host OS so that you can view and administer the database. When you
want to administer the database, log into it as user postgres and use the password you set
when you started the docker container. The command line we used to create and start the
container makes the database available on port 5432 of the host OS. (This is the default
port number for PostgreSQL).

Creating a Database
Once you have installed PostgreSQL, you need to create two databases on your local
server; one for testing the application and one for running it. (If you installed PostgreSQL
as a container, you already created application-db when you started up the container.) To
do this from the command line using the client tools:

createdb -U postgres application-db

createdb -U postgres test-db

00_COBOL2_AM.indb 16300_COBOL2_AM.indb 163 4/19/21 5:08 PM4/19/21 5:08 PM

164  Containerizing COBOL Applications

The createdb command prompts you for the postgres password each time. You now have
two empty databases on your local server. The application will create the tables and data.

Remember, you need to install the PostgreSQL tools in your host OS to be able
to run these commands, even if you have installed PostgresQL server using a
container.

The OpenESQL Version of Credit Service
Most of the changes made to the application are in the ACCOUNT-STORAGE-ACCESS
program (AccountStorageAccess.cbl), which now uses Open ESQL syntax to connect to
the database and access the records. The three data files — account.dat, customer.dat and
transaction.dat — have been replaced by three tables: account, customer, and transaction.

Each transaction belongs to an account and each account belongs to a customer, so
the account id field in transaction is defined as a foreign key pointing to a record in the
account table and the customer id in account is defined as a foreign key pointing to a
record in the customer table (see Figure 9-4).

customer

customerId

account

accountId

customerId

transaction

transactionId

AccountId

Figure 9-4  Tables with foreign keys

To minimize changes elsewhere in the application, ACCOUNT-STORAGE-ACCESS
still has all the same entry-points as before and they all behave in (mostly) the same way
as before. A legacy application can often have more than one downstream application
that depends on it, in which case you need to keep the new version compatible with the
old version.

Figure 9-5 shows what has changed in the new version of the application (refer back to
Figure 6-1 to see the original version of the application). The BusinessRules project has
been renamed to BusinessRules-oesql to differentiate it from the original. This was for
my benefit when working on the different examples rather than for any technical reason.

Grey shading indicates what has changed. ACCOUNT-STORAGE-ACCESS is where
nearly all the changes are. Nearly all of the logic in this program that originally read and
wrote records in ISAM files has been replaced by SQL statements. As shown in the SQL

00_COBOL2_AM.indb 16400_COBOL2_AM.indb 164 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    165

Preprocessor in the project properties for BusinessRules-oesql, the OpenESQL proces-
sor has been enabled and the driver manager set to JDBC.

The small gray dots on three of the classes in BusinessInterop indicate that some minor
changes were made here. This was in places where the behavior of the revised ACCOUNT-
STORAGE-ACCESS program didn’t exactly match the original. You can diff these files
against those from the Chapter 8 examples to see that little has changed. None of the
existing code in CreditService itself has changed, but there is a new AdminController class
that uses the new DatabaseIntializer module. We’ll explain DatabaseInitializer later in this
chapter, when we start running the code.

PostgreSQL

BusinessRules

JAR

CALENDAR

INTEREST-CALCULATOR

1

BusinessInterop

JAR

AccountDataAccess

2

CreditService

JAR JAR

3

Spring Boot

Tomcat
Server

AccountController

CustomerController

TransactionController

StatementController

AdminController DatabaseInitializer

CustomerDataAccess

TransactionDataAccess

MonthlyInterest

ACCOUNT-STORAGE-ACCESS

Figure 9-5  Changes to the Credit Service application

It’s not always easy to know when you have inadvertently broken something during a
refactoring like this. However, for this application, the three test suites we used in Chapter
7 made it much easier to see which parts weren’t behaving as expected.

Download the examples for this chapter. There is a complete example and a worked
example in this chapter. The worked example has some failing tests that are all fixed in the
complete example.

00_COBOL2_AM.indb 16500_COBOL2_AM.indb 165 4/19/21 5:08 PM4/19/21 5:08 PM

166  Containerizing COBOL Applications

Exporting Existing Data
All the data for our application is currently in COBOL indexed files, but it needs to be
migrated to a database for the new application. There is more than one way to do this, but
the approach taken here was to export all the data out of the indexed files into Comma
Separated Variable (CSV) files. CSV files are plain-text files where each line is a record and
the fields in each record are separated by commas. You can open CSV files in spreadsheet
programs like Excel or Google Sheets.

To export the data, I wrote a small Visual COBOL application called DataMigrationTool.
It’s included as part of the Chapter 9 examples. You don’t need to run it because the
exported CSV files are actually included as part of the examples, but it’s included so that
you can run it against your own data files if you want to see how it works.

To run the DataMigration application:

1.	 Import it into an Eclipse workspace that includes the previous version of the
BusinessRules project (for example, the one we used in Chapter 8).

2.	 Create a new COBOL JVM Run configuration for the DataMigration project.

3.	 Set the Main Class as com.mfcobolbook.datamigration.Main.

4.	 On the Arguments tab, provide a single Program Argument giving the full
path to a directory for the output. The CSV files will be written here.

5.	 Add the dd_accountFile, dd_customerFile and dd_transactionFile environment
variables to the Run Configuration, pointing towards the data files you want to
migrate.

6.	 Click Run.

If everything is set up correctly, files account.csv, customer.csv, and transaction.csv
are written to the output directory. This is how the data was extracted from the COBOL
files. We’ll see how it is used to initialize the database when we start running the tests.

Building the Revised Application
There is an extra step before building and running the Chapter 9 application; you need to
download the PostgreSQL JDBC driver before it can connect to the database and add it
to the JVM build path for the BusinessRules-oesql and DatabaseInitializer projects. The
application will build without the driver jar being present, but it will fail at run-time as soon
as the code tries to access the database.

You can download the PostgreSQL JDBC driver from https://jdbc.postgresql.org. The
examples here were run using Version 42.2.12, but later versions should work provided
they are compatible with Java 8.

To add the driver:

00_COBOL2_AM.indb 16600_COBOL2_AM.indb 166 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    167

1.	 Import the projects in the worked folder of the Chapter 9 examples into a clean
Eclipse workspace.

2.	 In the COBOL Explorer, right-click the BusinessRules-oesql project and
choose New Folder. Create a new folder called lib.

3.	 Copy the downloaded JDBC jar file into the lib folder.

4.	 In the COBOL Explorer, right-click the BusinessRules-oesql folder and
choose Properties > Micro Focus > JVM Build Path.

5.	 Click the Libraries tab and then click the Add JARs button. Navigate to the lib
folder, select the PostgreSQL JDBC driver jar, and then click Apply and Close.

6.	 Repeat Steps 3-5 for the DatabaseInitializer project.

7.	 Once you have added the driver, ensure the Maven builders for projects
BusinessRules-oesql, BusinessInterop, and DatabaseInitializer (as explained in
previous chapters) run without any errors. If you get Maven dependency errors
for CreditService, ensure that the COBOL RTS is in your local repository (see
Chapter 2).

Running the Tests
We have three test suites for the application, in the following projects:

	■ BusinessSystemTests are MFUnit tests that run directly against the legacy COBOL

	■ interoptests are JUnit tests that run against the BusinessInterop project

	■ CreditService includes JUnit tests under the project’s src/test/java folder that test
the entire application end-to-end.

Running the BusinessSystemTests
We’ll run the BusinessSystemTests f irst, as these interact directly with the
BusinessRules-oesql project:

1.	 Click Run > Run Configurations.

2.	 On the left, select COBOL JVM Unit Test and then click the New
Configuration button.

3.	 Name the configuration BusinessSystemTests and select
BusinessSystemTests as the COBOL JVM Unit Test Project.

00_COBOL2_AM.indb 16700_COBOL2_AM.indb 167 4/19/21 5:08 PM4/19/21 5:08 PM

168  Containerizing COBOL Applications

4.	 Click on the Environment tab and then add a new environment variable:
DB_CONNECTION_STRING=

Driver=org.postgresql.Driver;URL=jdbc:postgresql:test-

db?user=postgres&password=db-password

5.	 Click Run.

The tests should all run, with 11 passes and 8 failures. If there are any problems with the
database or test setup, all the tests will fail with the same error. Make sure the password and
database user match the password and database user that was set in the connection string
in Step 4; also make sure you created the test-db schema as described in the “Creating
a Database” section. If you see the error code IM001 against all the tests, you probably
haven’t added the PostgreSQL JDBC driver as described in the previous section.

Once you have the expected number of passes and failures, you can develop an
understanding of why they failed. All the test failures are in the TestAccountStorage and
TestTransactionStorage programs; if you click on any of the failed test cases, the output in
the Test Results pane of the Micro Focus Unit Testing tab finishes with a SQL msg error
for either the account or transaction table (the following message is truncated; the last
word should be “constraint”):

insert or update on table “account” violates foreign key constr

All BusinessSystemTests always start off with an empty database. In Chapter 7, we
described the code that deleted the data files at the start of every test. In the examples for
this chapter, the HelperFunctions program has been modified so that every test starts by
dropping all the tables and then recreating them with the correct layout.

But now that we are using a relational database, there are constraints on the relationships
between the tables. You can’t add an account record unless there is already a customer
record that satisfies its foreign key constraint and you can’t add a transaction record without
an account record that satisfies this transaction record’s foreign key constraint.

Before these tests will pass, we must update the account and transaction tests to add
customer and account records that will ensure the database constraints are satisfied. But
first, let’s understand what changed in HelperFunctions in the BusinessSystemTests project.

Listing 9-1 shows the setup-test-data section from HelperFunctions. The previous
version of the test code deleted whichever file was pointed to by an environment variable.
The new version loads the DatabaseInitializer program and calls the CREATE-TABLES entry
point. DatabaseInitializer is a program in the DatabaseInitializer project; the CREATE-TABLES
entry point drops the customer, account, and transaction tables and recreates them.

Listing 9-1  The setup-test-data section

setup-test-data section.

 call DATABASE-INITIALIZER

 call CREATE-TABLES

00_COBOL2_AM.indb 16800_COBOL2_AM.indb 168 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    169

 set succeeded to true

 move function-status to lnk-function-status

 exit section.

In HelperFunctions.cbl the setup-test-data section contains the original source code
and the code shown in Listing 9-1 but uses conditional compilation so that the new one
is active. In the Micro Focus Build Configuration in the project properties for Business-
SystemTests, under Additional directives, you will see the constant setting OESQL-TEST
(1). To return to the original version of the code that worked with ISAM files, change the
constant from 1 to 0.

To simplify updating the code so the tests pass, the code to add additional customer and
account records is already in the TestAccountStorage.cbl and TestTransactionStorage.cbl
files but is omitted through conditional compilation. Listing 9-2 shows the setup-account-
test code in TestAccountStorage.cbl.

Listing 9-2  The setup-account-test section

setup-account-test section.

 call HELPER-FUNCTIONS

 call INIT-ACCOUNT-TEST using by reference function-status

$if OESQL-TEST = 11

 perform add-fk-customer

$end

 goback.

The new code (perform add-fk-customer) is inside a conditional compilation block.
Change the value in the test statement from 11 to 1 to include the code. It shows as an
error because add-fk-customer isn’t yet included in the compilation.

Search for another occurrence of 11 to find the code in Listing 9-3.

Listing 9-3  The add-fk-customer section

$if OESQL-TEST=11

*> A customer record is needed as the foreign key to an account

 add-fk-customer section.

 move FK-CUSTOMER-ID to WS-CUSTOMER-ID of WS-CUSTOMER-RECORD

 move FK-CUSTOMER-FIRST-NAME to WS-FIRST-NAME

 move FK-CUSTOMER-LAST-NAME to WS-LAST-NAME

 call ADD-CUSTOMER using by reference function-status

 WS-CUSTOMER-RECORD

 if failed perform test-failed end-if

 exit section.

$end

00_COBOL2_AM.indb 16900_COBOL2_AM.indb 169 4/19/21 5:08 PM4/19/21 5:08 PM

170  Containerizing COBOL Applications

This code creates a customer-record and adds it to the database by calling ADD-CUSTOMER.
If any account record uses FK-CUSTOMER-ID as the Customer ID of any record added, the
foreign key constraint is satisfied. Change the value in the test statement from 11 to 1 and
run the tests again. This time, the tests in the TestAccountStorage suite pass.

Repeat the same procedure with TestTransactionStorage.cbl; find the condition-
al compilation blocks where OESQL-TEST=11 and change them to OESQL-TEST=1. Rerun
BusinessSystemTests; all the tests now pass.

Behavior Changes in Updated Code
Our intention in updating BusinessRules was to keep the same behavior as
before in order to maintain compatibility with any clients of the code. But despite
that, we’ve had to modify the tests before they will pass. Similar issues can arise
whenever you replace one technology with another. We could have sidestepped
the issue by defining the account and transaction tables to not have foreign key
dependencies. This would have kept the behavior closer to the original, but that
is not the expected behavior for tables in a relational database and would mean
losing one of the advantages of relational data: maintaining internal integrity.
In this case, it is probably better to live with a small change in behavior than to
have a database with an “unusual” design. Whenever you make changes like this,
communicate the change, and the reasons for that change, to any other teams
that rely on the code.

Running the Interoperation Tests
We’ll run the interoptests next:

1.	 Click Run > Run Configurations.

2.	 On the left, click JUnit then click the New Configuration button.

3.	 Name the configuration interoptests and then select interoptests as the
project

4.	 Set the Test runner to JUnit 4.

5.	 Click on the Environment tab and add a new environment variable:
DB_CONNECTION_STRING=

Driver=org.postgresql.Driver;URL=jdbc:postgresql:test-

db?user=postgres&password=db-password

(It’s easiest to copy the value from the BusinessSystemTests Run configuration
since you’ve already got that working).

00_COBOL2_AM.indb 17000_COBOL2_AM.indb 170 4/19/21 5:08 PM4/19/21 5:08 PM

	 Changing from ISAM to a Database    171

6.	 Click Run.

This time there are two errors and two failures out of 28 tests. And as before, they are
caused by attempted violations of foreign key constraints. Before fixing it, let’s see what
has changed in InteropTest.java in this version. Listing 9-4 shows almost all the changed
code in this class.

Listing 9-4   nteropTest.java initialization code

public class InteropTest {

 private static BigDecimal DAILY_RATE = new BigDecimal(0.1)

 .divide(new BigDecimal(365), 10, RoundingMode.HALF_UP);

 private DatabaseInitializerWrapper databaseInitializerWrapper;

 @Before

 public void initTestData() throws IOException {

 databaseInitializerWrapper =

 new DatabaseInitializerWrapper();

 createEmptyTables();

 populateTables();

 }

 private void populateTables() throws IOException {

 String csvFile = getCsvPath(“customer.csv”);

 databaseInitializerWrapper.loadCustomerData(csvFile);

 csvFile = getCsvPath(“account.csv”);

 databaseInitializerWrapper.loadAccountData(csvFile);

 csvFile = getCsvPath(“transaction.csv”);

 databaseInitializerWrapper.loadTransactionData(csvFile);

 }

 private void createEmptyTables() {

 databaseInitializerWrapper.dropAndCreateTables();

 }

 private String getCsvPath(String source) throws IOException {

 URL url = InteropTest.class.getClassLoader()

 .getResource(source);

 String path = url.getPath();

 assertNotNull(path);

 assertTrue(path.length() > 0);

 File f = new File(path);

 return f.getAbsolutePath();

 }

00_COBOL2_AM.indb 17100_COBOL2_AM.indb 171 4/19/21 5:08 PM4/19/21 5:08 PM

Java lacks conditional compilation, so you can’t see it directly against the original code.
To compare it to the previous version, use a diff tool to compare it to the version of
JavaInteropTest in the Chapter 7 examples.

These tests run against a small set of test data that is initialized before each test case is
run (unlike the previous tests, which always run against an empty database). The previous
version of the tests simply copied a new set of indexed files from a predefined test set.
That approach is not so easy with PostgreSQL, especially because the test runner might
not have permissions to rewrite the database files in the file system. So instead, the initial-
ization code makes use of the DatabaseInitializer project to drop the tables from the test
database, recreate them, and then initialize them with data stored in CSV files. The CSV
files are in the project’s resources folder so that they can be located from the classpath.

The COBOL program in the previous example called the DatabaseInitializer program
directly. But for the benefit of Java, there’s also a DatabaseInitializerWrapper class, which
the code here uses.

Three of the tests in InteropTest.java start with no records at all; they started by invok-
ing copyDataResource() to copy in empty data tables. These tests now call createEmpty-
Tables(), which drops and recreates the tables in the test database. Those are the only
other changes to the compiled code.

As before, we alter the tests so that they no longer violate foreign key constraints. This
means updating the initialization data as well as some of the test code, adding one extra
customer record and one extra account record. These extra records don’t have dependent
account or transaction records, so they can be used safely in the deleteCustomer and
deleteAccount tests (both currently failing).

To change the tests so that they all pass:

1.	 In worked/interoptests/src/main/resources/, add the new records to the
end of the customer.csv and account.csv files.
The easiest way to do this is to copy the customer.csv and account.csv files
from complete/interoptests/src/main/resources/.

2.	 Open InteropTest.java. All the changes needed to fix the tests are in the
worked version of this file but commented out. Search for the TODO comments in
this file and follow the instructions in each one.

3.	 Save the changes and rerun the tests. They should now all pass.

Running the CreditService Tests
To run the CreditService tests:

1.	 Click Run > Run Configurations.

2.	 On the left, select JUnit and then click the New Configuration button.

00_COBOL2_AM.indb 17200_COBOL2_AM.indb 172 4/19/21 5:08 PM4/19/21 5:08 PM

	 Running the Revised CreditService Application    173

3.	 Name the configuration CreditService and then select CreditService as the
project.

4.	 Set the Test runner to JUnit 4.

5.	 Click on the Environment tab and add a new environment variable:
DB_CONNECTION_STRING=

Driver=org.postgresql.Driver;URL=jdbc:postgresql:test-

db?user=postgres&password=db-password

(It’s easiest to copy the value from the BusinessSystemTests Run
configuration since you’ve already got that working).

6.	 Click Run.

There are six failures out of 23 tests, and as in the previous cases, they are all foreign
key errors. Like the interoptests, the only updates at this point are to the initialization, which
works the same way as it does for interoptests; the tables are dropped from the database
and reinitialized with the values in CSV files in the src/test/resources folder.

To change the tests so that they all pass:

1.	 In worked/CreditService/test/main/resources/, add the new records to the
end of the customer.csv and account.csv files.
The easiest way to do this is to copy the customer.csv and account.csv files
from complete/ CreditService/test/main/resources/.

2.	 There are failing tests in three files: WebServiceAccountTests.java,
WebserviceCustomerTests.java and WebserviceTransactionTests.java. All the
changes needed to fix the tests are in the worked versions of these files but com-
mented out. Search for the TODO comments in this file and follow the instructions
in each one.

3.	 Save the changes and rerun the tests. They should now all pass.

Now that all the tests for the application pass, we can be reasonably confident that it
now functions the same as it did before we started changing the backend.

Running the Revised CreditService Application
Now that all the tests pass in our refactored application, we can run the application itself.
But first we are going to populate the application database (application_db) with customer
and account data migrated from the original application.

00_COBOL2_AM.indb 17300_COBOL2_AM.indb 173 4/19/21 5:08 PM4/19/21 5:08 PM

174  Containerizing COBOL Applications

Administrative Tasks
Populating an application database before it is run the first time is an administrative task.
You could ask a Database Administrator to do this for you, but one of the 12 factors for
cloud-native applications (https://12factor.net) is “Run admin/management tasks as one-
off processes.”

So a task like the initialization of a database schema should be an automated, repeatable
task that ships along with the application code and can be run in the same way whether
the application is in development, test, staging, or production. There are several ways you
could approach this. You could include one or more admin programs that ship with your
application to carry out these tasks. In the case of the example, we’ve simply added new
endpoints to the application.

This makes it simpler to demonstrate the application as we move it to different environ-
ments but opens up a security vulnerability for a real production application, as anyone
accessing those endpoints could delete or reinitialize the database.

A real application would enforce authentication and authorization to mitigate the risk
of such attacks, but an even better practice is to separate administrative functions either
to a separate application with more restricted access or applications intended to be run
separately as one-off jobs. However, the principle holds that the programs carrying out
the admin should be part of the deliverables for the application, and deployable in the
same environment.

In the CreditService project, open the com.mfcobolbook.creditservice.webservice pack-
age to see the new AdminController class. It has one endpoint (/admin/initialize-db), which
drops and recreates the tables and then loads data from CSV files in /src/main/resources.
Storing initialization data along with the application is something you would not be likely
to do with a real application. For one thing, the datasets for production will not be the
same as for other environments, and shipping a different deployable for each environment
violates cloud-native principles.

One way to make data available for initializing applications in real cloud environments is
to put it into a bulk-storage medium. Amazon Web Services (AWS) provides S3, a service
for storing large amounts of data cheaply in “buckets.” The S3 API has been implemented
by several vendors for their own storage solutions so that the same code and libraries can
be used regardless of whether your application will be deployed to AWS.

Starting the Application
To start the application:

1.	 Click Run > Run Configurations.

2.	 On the left, select Java Application and then click the New Configuration
button.

00_COBOL2_AM.indb 17400_COBOL2_AM.indb 174 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing the CreditService    175

3.	 Name the configuration CreditService, select CreditService as the
Java project, and name com.mfcobolbook.creditservice.webservice.
WebserviceApplication as the Main class.

4.	 Click on the Environment tab and then add a new environment variable:
DB_CONNECTION_STRING=

Driver=org.postgresql.Driver;URL=jdbc:postgresql:application-

db?user=postgres&password=db-password

This assumes that you created application-db when you created test-db, in sec-
tion Creating a Database earlier in this chapter.

5.	 Click Run.

6.	 Go to http://localhost:8080/admin/initialize-db. If everything is set up correctly,
the browser displays the message All tables initialized. You need to do this
only the first time you run the application against a new database.

7.	 Retrieve a customer: http://localhost:8080/service/customer/1

8.	 Carry out an interest calculation: http://localhost:8080/service/account/25/state
ment/20190701?rate=25&initialBalance=300

At this point, we have an application we can easily containerize. It is no longer dependent
on the local file system for storage. The database configuration is set by an environment
variable so that we can deploy exactly the same code in every environment rather than
editing configuration files. This satisfies the first of the 12 factors: “One codebase tracked
in revision control, many deploys.”

Containerizing the CreditService
In this section, we will use Docker to create a container for our application. The container
image contains all the dependencies needed to run the application, including a Java run-
time. Figure 9-6 shows the application and database containers, both of which are inside
a Docker network.

00_COBOL2_AM.indb 17500_COBOL2_AM.indb 175 4/19/21 5:08 PM4/19/21 5:08 PM

176  Containerizing COBOL Applications

PostgreSQL

File volume

image - postgres:12.3

postgres-server container

credit-service

AdoptOpen JDK 8.0

mfcobolbook/credit-service 1.0

credit-service container

app-network

port 5432

Figure 9-6  The containerized application

The Docker network is a virtual network created on the host that allows separate
containers to communicate. By default, each container you start up on the host OS has
no ports open to other processes running on the host OS. The -p switch that you can use
with the docker run command enables you to map container ports to ports on the OS,
making them visible in the same way as ports opened by applications running directly on
the host OS.

However, containers can’t see ports open on the host OS without being made part of
a network that can also see those ports. The easiest way for an application made from
separate running containers to communicate is to create a Docker network and specify it
as the container network when a container is started. Docker provides a DNS service that
enables containers on the same network to find each other by container name.

In the next sections we will:

1.	 Create a container image for the CreditService application.

2.	 Create the network and start the application running.

Building a Container Image
A container image is a standalone package that includes everything needed to run the
packaged application: the executable code for the application, dependent libraries, system
tools, and configuration. A container image can be run anywhere that hosts a suitable
container run-time. We will use Docker because it is the best known and most widely
available container run-time.

In Figure 9-6, our credit-service container contains both the CreditService application
and a Java run-time. Because CreditService is a Spring Boot application, we can package

00_COBOL2_AM.indb 17600_COBOL2_AM.indb 176 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing the CreditService    177

it as a single jar file that includes all the other Java libraries it depends on (this is known as
an “uber-jar” or “fat jar”). Until now, we’ve always run the application through Eclipse, but
now we will build the jar file and run that before packaging it up.

To build CreditService:

1.	 Start a command prompt and navigate to the Chapter 9 worked/CreditService
directory.

2.	 Set a DB_CONNECTION_STRING environment variable to point to the test
database on your PostgreSQL server. You can copy the setting from your Eclipse
CreditServiceTests Run Configuration (see the “Running the CreditService
Tests” section in this chapter).

3.	 Enter the command mvn clean package
Maven runs against the project’s pom.xml, compiles the application, and then
runs all the project tests. If the tests all pass, it creates a jar in the target direc-
tory. This is why we set the DB_CONNECTION_STRING environment variable
first; the tests will all fail without it.
You can skip running the tests by including -Dmaven.test.skip=true as part of the
Maven command line, but it’s good practice to run tests as part of a build.

If the build ran successfully, you have a CreditService-0.0.1-SNAPSHOT.jar in the
CreditService/target directory. You can run the application with command java -jar Cred-
itService-0.0.1-SNAPSHOT.jar. (You will be connected to the test database unless you
change the DB_CONNECTION_STRING environment variable first.)

Now we can package the jar file into a container by creating a Dockerfile, which is a
text file that tells Docker how to build the image. Explaining the syntax and commands for
a Dockerfile is beyond the scope of this book. There are plenty of online resources you
can refer to, including the Docker documentation itself. The CreditService application is
relatively simple and we’ve already built the jar file that includes all of its Java dependen-
cies. To create the Dockerfile, we will use the example Spring Boot Dockerfile from the
Spring Getting Started with Docker documentation, which you can find by searching the
Web for “spring boot docker image”.

In the CreditService directory, create a text file called Dockerfile (no extension) and then
copy in the text from Listing 9-5.

Listing 9-5  A Dockerfile

FROM openjdk:8-jdk-alpine

RUN addgroup -S spring && adduser -S spring -G spring

USER spring:spring

ARG JAR_FILE=target/*.jar

COPY ${JAR_FILE} app.jar

ENTRYPOINT [“java”,”-jar”,”/app.jar”]

00_COBOL2_AM.indb 17700_COBOL2_AM.indb 177 4/19/21 5:08 PM4/19/21 5:08 PM

178  Containerizing COBOL Applications

This builds a docker image using the base image openjdk:8-jdk-alpine, which is an
Alpine Linux base image that includes an OpenJDK Java. It is stored in a public Docker
image repository.

The other instructions in the Dockerfile add the Spring user — a user the application
will run as — to the container and copy our application jar file into the container as app.jar.
The ENTRYPOINT statement provides the command that will be run when the container
is started.

To create the image:

docker build . -t mfcobolbook/credit-service:1.0

This builds the image and tags it as mfcobolbook/credit-service with version 1.0. The
image file doesn’t appear in the CreditService directory; it is stored directly in the image
repository on your local machine. To make this image available to other machines, you have
to publish it to a public or private repository using the docker push command.

Docker repositories are analogous to the Maven repositories discussed in Chapter
2, but instead of containing Java jar files, they contain container image files. Like Maven,
Docker searches your local repository first and then searches the other repositories it has
been configured with. When you ran the docker build command, it displayed messages
showing the repositories scanned in order to find the openjdk:8-jdk-alpine image used to
build the application image.

In the next section, we will run the containerized application.

Running the Application
At this point, we have a container for our application. We are going to create the Docker
network and put our database and application into the network. For the application to be
usable, we will also have to expose its HTTP port outside the Docker network. We’ll also
expose the PostgreSQL default port outside the network so that it is still possible to admin-
ister it with tools running on the host OS. Figure 9-7 shows the containerized application,
the Docker created virtual network, and the two ports that will appear as localhost ports
on the Host OS.

A host OS only has one set of ports available; only one application can listen on port
8080 and only one application can listen on port 5432. Each container running inside a
Docker virtual network has its own set of ports, but to expose those ports outside the virtual
network, they must be mapped to ports on the host OS; it follows that only one container
can be mapped to a given port on the host.

00_COBOL2_AM.indb 17800_COBOL2_AM.indb 178 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing the CreditService    179

PostgreSQL

File volume

image - postgres:12.3

postgres-server container

credit-service

AdoptOpen JDK 8.0

mfcobolbook/credit-service 1.0

credit-service container

app-network

port 5432

Host OS

port 8080 port 5432

Figure 9-7  Application with network ports

Port mappings are defined when a container is started up the first time. A running
container can be stopped and restarted, but it retains the same port mappings as when
it was created.

Figure 9-8 shows the basic lifecycle of a container. A container is created from an
image and starts running in response to the docker run command. When a container is no
longer required, it is deleted. You can start several containers from the same image; each
container has its own separate lifecycle.

Docker Image

Created container Running Container Stopped container

Container deleted

docker start

docker stop docker rmdocker run

Figure 9-8  Container lifecycle

To create the network:

docker network create app-network

To remove the current database container and create a new one:

00_COBOL2_AM.indb 17900_COBOL2_AM.indb 179 4/19/21 5:08 PM4/19/21 5:08 PM

180  Containerizing COBOL Applications

1.	 Run command docker stop postgres.

2.	 Run command docker rm postgres.
This removes the container. Perform Step 1 and Step 2 only if you created a
postgres container previously. For more information, see the “Install as a Docker
Container” section).

3.	 Run command docker run --name postgres --network app-network
 -e POSTGRES_DB=application-db

 -e POSTGRES_PASSWORD=password

 -p 5433:5432 -d postgres:12.3

The only difference between this command and the one we used previously in
the chapter is that we have specified that it should run inside app-network.

Finally, to start the application running:

docker run -p 8080:8080 --name credit-service-app --rm

 --network app-network

 -e DB_CONNECTION_STRING=’Driver=org.postgresql.

Driver;URL=jdbc:postgresql://postgres/application-db?user=postgres&password

=’password

mfcobolbook/credit-service:1.0

There are some differences between the way we have started the application and
database containers.

	■ It has been started without the -d flag, so it isn’t running in detached mode.

	■ It has been started with the –-rm flag, so if you stop the container, it will be
automatically deleted.

Not running in detached mode leaves the container attached to the console’s stdout
and you will see all the Spring Boot startup messages. If there are any problems starting
it up (like connecting to the database), the error messages will make it easier to debug.
Once it’s working, you can stop the container and then use docker run with the -d switch
to restart it in detached mode.

It’s very common to use -–rm with application containers when there is no state that
needs to be preserved. All our application’s state is in the attached database, and if we
need to stop the container, there’s no need to clean it up by deleting it later. Creating a
new container from the image is not much more expensive than restarting a stopped one.

Go to http://localhost:8080 and you should see the “Hello World” message that
indicates our Spring Boot application has started and is responding to requests. Try

00_COBOL2_AM.indb 18000_COBOL2_AM.indb 180 4/19/21 5:08 PM4/19/21 5:08 PM

	 Containerizing the CreditService    181

initializing the database by going to http://localhost:8080/admin/initialize-db. If this com-
pletes successfully, the application is successfully running. You can use any of the other
application REST calls to verify functionality.

At this point, we have a fully containerized application. Once it has been pushed to a
repository, it can be run on any OS with a docker run-time that can pull the image from the
repository. The only configuration it needs is a database connection string; that is read in
from the environment, so exactly the same code and image can be used whether we are
running the application in testing, staging, or production.

It’s also possible to scale the application by starting multiple instances and putting
them behind a load balancer. For example, the monthly interest-calculation is comparatively
compute-intensive; you could use multiple instances of the application to run calculations
in parallel when it’s time to send monthly statements to millions of customers.

The docker-compose Command
The docker-compose command enables you to configure and start multiple
containers with a single command. You create a docker-compose.yml file with
the configuration for an application and then use docker-compose up to start the
containers and use docker-compose down to dispose of them. When you have a
multi-container application you want to distribute to end-users, docker-compose
is a good way to hide the complexity of configuring and starting the applica-
tion. However, it isn’t as effective as Kubernetes for managing production-grade
cloud-native applications. You will learn about Kubernetes in Chapter 10.

Building Scripts
Building the container and then deploying the application required several commands.
Automating the process enables you to deliver more often and reduces the likelihood of
errors. The CreditService application is very simple to build and containerize, but most real
applications have more complex builds. Tests should be run as part of the build process
and builds failed if tests fail.

Creating a Continuous Integration/Continuous Delivery (CI/CD) pipeline means that every
change committed to your source code repository results in the application being built,
tested, and deployed – even if the automated deployment is only to a test environment. The
more mature your automation and testing process, the closer you should get towards full
automation from commit through to production.

At time of writing, Jenkins is probably the most popular tool used for building CI/CD
pipelines. Creating a CI/CD pipeline is not something that we are going to cover here, but

00_COBOL2_AM.indb 18100_COBOL2_AM.indb 181 4/19/21 5:08 PM4/19/21 5:08 PM

182  Containerizing COBOL Applications

in the complete/CreditService folder of the Chapter 9 examples, you will find two shell
scripts that carry out the build and deployment for CreditService. These could be used
as part of a build pipeline.

Listing 9-6 shows a shell script that builds the CreditService jar and then builds the con-
tainer. The statement that sets DB_CONNECTION_STRING has been split across several
lines because of the limited page width but is only one line in the actual shell script file.

Listing 9-6  Simple build script

#!/bin/bash

if [! -z $DB_TEST_PASSWORD]

then

 DB_CONNECTION_STRING=

 ‘Driver=org.postgresql.Driver;

 URL=jdbc:postgresql:test-db?

 user=postgres&password=’$DB_TEST_PASSWORD

 echo $DB_CONNECTION_STRING

 if mvn package

 then

 docker build . -t mfcobolbook/credit-service:1.0

 else

 echo *** BUILD FAILED ***

 exit 1

 fi

else

 echo Set DB_TEST_PASSWORD TO value for test database.

fi

Because Maven runs the CreditService tests before creating the package, the script
sets up a DB_CONNECTION_STRING environment variable. The script expects the da-
tabase password to be set already (in DB_TEST_PASSWORD) and fails when this value
is not already set. As a general principle, don’t set secrets like passwords into scripts that
will go into source control. Your CI/CD tool should provide a secure way for you to pass
secrets to your build and test scripts.

The script runs the mvn package that will build CreditService and run its tests. If either
the build or the test fails, the non-zero exit code will fail the build and the container won’t
get built. If mvn package runs successfully, the script builds the container image. If the
docker build step fails, it exits with a non-zero code; the CI/CD system running this will be
able to use a non-zero code to know that the build has failed and not to move to the next
step in the pipeline.

If this script is embedded in a CI/CD pipeline, the next step might be to push the con-
tainer image to a registry, deploy it to a test environment, and then run a larger test-suite.

00_COBOL2_AM.indb 18200_COBOL2_AM.indb 182 4/19/21 5:08 PM4/19/21 5:08 PM

	 Summary    183

Listing 9-7 shows an even simpler script. It has the same three docker commands we
used to set up and run the application earlier, although as in the previous script, the data-
base password has been externalized into another environment variable.

Listing 9-7  Deploy and run the application

#!/bin/bash

docker network create app-network

docker run --name postgres-server --network app-network

 -e POSTGRES_DB=application-db

 -e POSTGRES_PASSWORD=$DB_TEST_PASSWORD

 -p 5433:5432 -d postgres:12.3

docker run -p 8080:8080 --name credit-service --rm

 --network app-network

 -e DB_CONNECTION_STRING=’Driver=org.postgresql.Driver;

 URL=jdbc:postgresql://postgres-server/application-db?

 user=postgres&password=’$DB_TEST_PASSWORD

 mfcobolbook/credit-service:1.0

This script assumes that neither the docker network nor the containers are already
created on the host; if you use this as part of an automated test environment deploy, you
need a tear-down stage to delete these entities if already present.

Summary
This chapter covered several topics. We refactored the CreditService application to be
much closer to “cloud-native” using the existing test-suites to ensure that it still behaves as
expected. And then we ran it using Docker containers. Containers are an important building
block for building cloud-native applications and applications built from micro-services, but
they are only part of what you need to build and run a real application.

Even in its simplest form, our application requires its own network and separate contain-
ers for the application and the database. If we started scaling it up, the complexity would
increase quickly. In the next chapter, you will learn about cloud deployment in more detail,
including how to use Kubernetes for deploying and orchestrating containers. You will also
learn about “serverless computing.”

00_COBOL2_AM.indb 18300_COBOL2_AM.indb 183 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 18400_COBOL2_AM.indb 184 4/19/21 5:08 PM4/19/21 5:08 PM

185

C H A P T E R 1 0

COBOL and
Microservices

In the previous chapter, we containerized the CreditService application and ran it using
Docker. Containerizing the application made it easier to manage and deploy on different plat-
forms. In this chapter, we’ll take a look at two platforms you can use to deploy microservices:

	■ Kubernetes

	■ Serverless Computing

This is not an exhaustive list of platforms; the goal is to give you an idea of the possibilities.
Although Kubernetes itself is an open-source project, there are several vendors who sell
and support their own flavor of the platform. The core operating principles and APIs are
the same in all of these; what differs are the add-ons that help with deploying, monitoring,
and managing the platform.

Serverless computing is a particular class of PaaS; one where you deploy individual
“functions” to the platform. When the functions aren’t in use, they aren’t running and
need no compute or memory resources. The only resource needed is the storage for the
container image. In this chapter, we will use AWS Lambda as our serverless platform, but
there are others to choose from.

Why Do I Need a Platform?
If all the material presented in the last chapter is new to you, you might be feeling that

life was simpler in the old days. You had an application, you commissioned a server, and
you installed your application.

00_COBOL2_AM.indb 18500_COBOL2_AM.indb 185 4/19/21 5:08 PM4/19/21 5:08 PM

186  COBOL and Microservices

Important applications warranted big servers, with RAID arrays, UPS, and lots of
engineering to make sure they didn’t go down unexpectedly. Really important applications
got a second server for failover, possibly located in a different data center.

There are several factors driving the move towards clouds. One of the biggest is the drive
for rapid innovation. Deploying apps directly on servers is slow and expensive. It can take
months to commission a server and get it installed before you can put your application on
there (most of this time is administrative, but it still all has to be done). Even though servers
are usually VMs rather than physical hardware, in many organizations the process can still be
very slow, with separate requests for network and connectivity. Development teams should
be able to concentrate on applications and business value, not infrastructure and plumbing.

With a capable cloud platform, whether private or public, a team can go from having an
idea to deploying an initial version of the application in days. If they’ve already written the
code, they could be up and running with something accessible to end-users in a few hours.

In the last chapter, we used Docker to containerize and deploy the CreditService
application. However, we were deploying only two containers. For a robust and scalable
microservice deployment, we want a minimum of two instances of the application running.
Figure 10-1 shows a more realistic deployment. We’ve now added two more application
containers, a load balancer, and we also need to open up the application’s subnet so that
the application can be accessed from outside. We might also want to have some kind of
autoscaling set up so that the number of credit-service containers can be increased or
decreased according to load.

app-network

http port 80

credit-service
container

lo
ad

 b
al

an
ce

r

credit-service
container

credit-service
container

postgres-server
container

Figure 10-1  A scaled version of the CreditService application

Now imagine that your entire application consists of perhaps six or seven such
microservices, which now also need mechanisms for internal discovery, for services, and
for communication – suddenly deployment and management is a lot more complex.

00_COBOL2_AM.indb 18600_COBOL2_AM.indb 186 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    187

What happens when you want to update the version of the deployed application? How
do you monitor its health, examine application logs, and so on? These aspects of operating
a production application are sometimes called “day two” issues; a capable platform will
help you solve them.

In this chapter, you will learn about two alternative platforms for deploying our application:

	■ Kubernetes

	■ Serverless computing

This should start you thinking about the opportunities and problems that moving your
applications from monolith to microservices are likely to bring. You won’t be a devops expert
after reading this chapter, but you will have a better understanding of the technical issues.

Kubernetes
Kubernetes (often abbreviated to K8S) is an open-source container orchestration project for
automating deployment and management of applications. Kubernetes was initially designed
by Google, but is now maintained by the Cloud Native Computing Foundation (CNCF). A
Kubernetes cluster consists of one or more nodes, each of which can run several pods.

The Kubernetes documentation defines a pod as the “smallest deployable unit of com-
puting.” The pods in our example have only a single container, but pods can be defined
with multiple containers. This is to support use cases in which two different processes
work closely together. For example, you might deploy a proxy container together with your
application container for traffic management and metrics collection.

Kubernetes also provides abstractions to help you manage applications. We’ll look at a
few of these in this section, but Kubernetes provides a much larger set than we are going
to cover here. Kubernetes provides a lot of flexibility and power, but it also means that you
have to do a lot of the work in building a robust and scalable production platform that fits
your requirements.

A lot of vendors also provide Kubernetes implementations that provide extra manage-
ment and monitoring layers on top of the basic Kubernetes experience to make it easier to
build and run a stable production platform.

Getting Kubernetes
Installing a version of Kubernetes suitable for developer use on your local machine is very
straightforward using Minikube (which is available at https://kubernetes.io). Minikube uses
virtualization to install a single node cluster on your machine.

You will need a hypervisor installed before you can use Minikube. If you are on Windows,
you can use VirtualBox (which is available free at https://www.virtualbox.org) or Hyper-V.

00_COBOL2_AM.indb 18700_COBOL2_AM.indb 187 4/19/21 5:08 PM4/19/21 5:08 PM

188  COBOL and Microservices

VirtualBox is also available for Linux or you can install Linux Kernel Virtual Machine (KVM),
which is available at https://www.linux-kvm.org .

Once you have installed a hypervisor, follow the instructions at https://kubernetes.io/
docs/tasks/tools/install-minikube/ (or just search the web for “install minikube”) to install
Minikube on your local machine.

You will also need to install the Kubernetes Command Line Interface (CLI). This is
also available at https://kubernetes.io. Modern cloud platforms put a heavy emphasis on
being able to operate everything from the command-line tool. GUIs are provided mainly
for monitoring and observation. This is because a command line makes it much easier to
automate operations than a GUI.

Once you have installed Minikube and the Kubernetes CLI, follow the Minikube
documentation to start up a single node cluster:

minikube start -–driver=driver-name

For example, if you are using VirtualBox:

minikube start -–driver=virtualbox

Or if you are running Docker for Windows and therefore using Hyper-V as your hypervisor:

minikube start -–driver=hyperv

See the Minikube documentation for more details. At the time of this writing, creating
multi-node clusters is a beta feature of Minikube, but we need only one node to work
through the examples.

After the cluster is started, try the command:

kubectl get nodes

This should display output similar to:

NAME STATUS ROLES AGE VERSION

minikube Ready master 1m v1.18.3

In practice, Kubernetes on its own does not provide a full PaaS experience, which is
why there are so many vendors offering you their own Kubernetes distribution, built on
top of open-source Kubernetes. Setting up and running a production-ready Kubernetes
environment on either bare metal or VMs is a lot more complicated than installing Minikube
on a laptop. However, from the developer’s point of view, the way you deploy applications
doesn’t differ much between Minikube and any other Kubernetes distribution.

00_COBOL2_AM.indb 18800_COBOL2_AM.indb 188 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    189

Running CreditService as a Kubernetes Application
Kubernetes defines several types of entities that act as the building blocks to deploy con-
tainerized cloud applications. These entities enable you to manage containers, scaling,
networks, rollouts, and so on. Figure 10-2 shows the application running in Kubernetes
and the Kubernetes entities used to create it.

http port 80

credit-service ingress

credit-service service

credit-service deployment

postgres-database service

postgres deployment

Port 30nnn

postgres pod

credit-service pod credit-service pod

6

5

2
1

3

4

connection-strings
ConfigMap

db-password
Secret

Figure 10-2  CreditService Kubernetes diagram

These entities are:

	■ Pods. A pod is the basic execution unit of your application. It defines a container
together with some metadata. You never run a container directly in Kubernetes;
you always run a pod. Most pods have a single container, but you can define multi-
container pods where two (or more) separate containers must work closely together.

	■ Deployments. A Deployment is a declarative description of a ReplicaSet. A
ReplicaSet is a group of identical pods. If we want to run five instances of our
CreditService container, we can do it by creating a deployment that says we want
5 CreditService pods.

	■ Services. A service is an abstraction that provides access to a group of pods.
Individual pods can come and go at any time. You might scale the number of pods

00_COBOL2_AM.indb 18900_COBOL2_AM.indb 189 4/19/21 5:08 PM4/19/21 5:08 PM

190  COBOL and Microservices

in a Deployment up or down according to demand or a pod might crash and be
replaced by a new pod. Once you connect a Service to a Deployment, traffic sent
to the service is sent to the deployed pods in round-robin fashion

	■ ConfigMaps. A ConfigMap enables you to provide a set of key-value pairs to a
pod. You can use ConfigMaps in several ways, but we will use them to set environ-
ment variables in our container.

	■ Secrets. A Secret is like a ConfigMap, but the values are not shown in plain text
when queried through Kubernetes tools. Secrets are useful to prevent inadvertent
leaking of passwords or other credentials but they are not actually secure, as the
information is simply encoded as a base64 string. To store secrets safely, you need
to use secure encryption; there are a few products available to help with this. Our
example uses a Kubernetes Secret to store the database password.

	■ Ingress. The ingress makes our application available outside the Kubernetes clus-
ter on port 80 or port 443 for https. Our example application runs on http so that
we don’t need to generate and deploy certificates, but all production applications
should use https.

You might feel that we have suddenly introduced a lot of new concepts to run a relatively
simple application. These are all necessary to run any application in production. In the past
they might have been dealt with by a separate IT or Operations team, but cloud technology
is driving the move to DevOps – where developers get more closely involved with some
of the processes necessary to make an application run in production.

Now developers run and deploy the same application in development and test environ-
ments that is deployed into production. This drives beneficial outcomes, which include:

	■ The application deployment that developers work on is much more closely aligned
to the one in production.

	■ Development and Operations work closer together, which reduces silos of knowl-
edge and time-consuming hand-offs between teams.

	■ It incentivizes building automated Continuous Integration/Continuous Deploy-
ment (CI/CD) pipelines that can be used for development, test, and production
environments

Application Changes
The only change we have made to the CreditService application for Kubernetes is in the
way we get the connection string for the database. Until now, we’ve been passing it the
database connection string using the value of a single environment variable. From now on,
we will construct the connection string inside the application from four separate variables:

00_COBOL2_AM.indb 19000_COBOL2_AM.indb 190 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    191

	■ POSTGRES_HOST

	■ POSTGRES_DB

	■ POSTGRES_USER

	■ POSTGRES_PASSWORD

This makes it easier to keep the password secret and means we can share configuration
between the database and the application.

Download the Chapter 10 example files. There are two subdirectories:

	■ Kubernetes

	■ Serverless

Import the projects under the Kubernetes directory into Eclipse if you want to look at the
changes. However, you won’t actually need to build the application to run this example –
the container image is already in the Docker Hub registry; when you build the application
it is downloaded from here.

We’ve added a static method, setConnectionString() to the DatabaseInitializerWrap-
per class, and it is called from the open() method in the AbstractBusinessAccess class.
This method is called each time the Java code client code uses the COBOL application
(AbstractBusinessAccess is part of the interoperation layer).

The setConnectionString() itself constructs a connection string from the environment
variables listed above and then calls a new entry point in ACCOUNT-STORAGE-ACCESS to set
the connection string for this program. Everything else is the same as it was in the previ-
ous chapter.

In the next section, we will create and run the application using Kubernetes.

Defining the Kubernetes Application
All the files to create the application are in the Chapter 10 example files under the
kubernetes/configuration folder. Kubernetes works declaratively; you provide Kubernetes
with a description of the desired state of your system and it does its best to achieve and
maintain that state.

For example, the credit-service deployment creates the pods that host the CreditService
container. The specification provided says there should be two replicas. If one of the pods
fails for any reason (for example, it crashes), Kubernetes will detect the difference between
the current state and the desired state and start a new pod.

You can create a deployment by using the kubectl create deploy command, but
Kubernetes entities are usually defined using .yaml files. This enables you to store your
configuration in source control along with the rest of the application.

00_COBOL2_AM.indb 19100_COBOL2_AM.indb 191 4/19/21 5:08 PM4/19/21 5:08 PM

192  COBOL and Microservices

YAML Files
YAML—Yet Another Markup Language (or YAML Ain’t Markup Language, ac-

cording to preference)—is a structured text format. It is semantically similar to
JSON (JavaScript Object Notation) but easier for humans to read.

The configuration directory contains the following files:

	■ credit-service-deploy.yaml

	■ credit-service-service.yaml

	■ postgres-deploy.yaml

	■ postgres-service.yaml

	■ cs-connection-strings.yaml

	■ pg-db-secrets.yaml

Listing 10-1 shows the resource definition for the credit-service deployment. The deploy-
ment definition includes the definition of the Kubernetes pods that run the credit-service
application. It corresponds to Label 1 in Figure 10-2.

There are two spec sections; the first defines the deployment and the second spec
subsection defines the pod. Most of the pod definition describes the container the pod
will host.

Listing 10-1  The credit-service deployment resource definition

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 app: credit-service

 name: credit-service

spec:

 replicas: 2

 selector:

 matchLabels:

 app: credit-service

 template:

 metadata:

 labels:

 app: credit-service

 spec:

 containers:

 - image: mfcobolbook/credit-service:1.0

00_COBOL2_AM.indb 19200_COBOL2_AM.indb 192 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    193

 name: credit-service

 ports:

 - containerPort: 8080

 env:

 - name: POSTGRES_HOST

 valueFrom:

 configMapKeyRef:

 name: cs-connection-strings

 key: host

 - name: POSTGRES_DB

 valueFrom:

 configMapKeyRef:

 name: cs-connection-strings

 key: db-name

 - name: POSTGRES_USER

 valueFrom:

 configMapKeyRef:

 name: cs-connection-strings

 key: user

 - name: POSTGRES_PASSWORD

 valueFrom:

 secretKeyRef:

 name: pg-db-secrets

 key: password

There are a few items in this file worth describing in more detail. The first is the replicas:
2 field; this specifies that there should always be two pods for the credit-service appli-
cation. If, for example, the container in one of the pods crashes, it will be closed down
and Kubernetes will create a new pod in order to keep the replicas specification true. It’s
possible to edit the deployment to increase or decrease the number of pods. When you
edit an object like a deployment, Kubernetes adjusts the state to meet the new specifica-
tion. However, not all properties can be edited dynamically. There is also a Kubernetes
autoscaler that can be used to change the number of pods in a deployment dynamically
based on metrics like CPU or network.

The container image is defined as mfcobolbook/credit-service:1.0. This is a Docker
container, built in the way described in the previous chapter. It has been pushed to the
mfcobolbook repository on Docker Hub; when one of these pods is created for the first
time on a Kubernetes cluster, the image is fetched automatically from the repository.

Enterprises often host their own container repository of images rather than using
repositories on the public Internet. This enables tighter control over what is downloaded
and run on clusters.

The container specification also states that port 8080 should be open; this is the port
on which our Spring Boot application listens for requests. Finally, the env section specifies

00_COBOL2_AM.indb 19300_COBOL2_AM.indb 193 4/19/21 5:08 PM4/19/21 5:08 PM

194  COBOL and Microservices

four environment variables. Values for the first three are taken from a ConfigMap object
called cs-connection-strings.

The last value is for the database password and it is taken from a Kubernetes Secret
(defined in pg-db-secrets.yaml). If you now open postgres-service.yaml and look at that,
you can see it uses the same PostgreSQL image we used in the previous chapter. But we
are now setting the user, database name, and password from the same ConfigMap and
Secret that we used to configure the credit-service.

How do the credit-service pods connect to PostgreSQL? The credit-service deploy-
ment definition gets a host name from the cs-connection-strings ConfigMap (see Listing
10-2). This corresponds to Label 2 in Figure 10-2.

Listing 10-2  The ConfigMap resource file

apiVersion: v1

kind: ConfigMap

metadata:

 name: cs-connection-strings

data:

 host: “postgres-database”

 db-name: “application-db”

 user: “postgres”

 password: “LakeOrangeGarden”

The host is set to postgres-database. The host name for the database is defined by the
postgres-database-service. Listing 10-3 shows the database service resource. There are
three types of Service objects in Kubernetes; this one is the default type, ClusterIP. It not
only acts as a load balancer if the deployment it connects to uses multiple replicas, it reg-
isters its name in the Kubernetes DNS service. This corresponds to Label 3 in Figure 10-2.

Listing 10-3  The database service resource

apiVersion: v1

kind: Service

metadata:

 creationTimestamp: null

 labels:

 app: postgres-database

 name: postgres-database

spec:

 ports:

 - port: 5432

 protocol: TCP

 targetPort: 5432

 selector:

00_COBOL2_AM.indb 19400_COBOL2_AM.indb 194 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    195

 app: postgres-database

The ports specification in the ClusterIP service definition specifies the port on which
this service is exposed and the target port used by the application running inside the
container. The exposed port is mapped to the target port on the container. In this case,
both ports are 5432 – the standard PostgreSQL server port. The service is associated
with the deployment through the matching label app: postgres-database. The postgres
deployment (Label 4 in Figure 10-2) shares the same label – the resource isn’t listed here,
but you can see it by opening postgres-deploy.yaml in the configuration directory. In the
next section, we will deploy the application.

Deploying the Application
Deploying the application is very simple, as we have defined all the resources in configura-
tion files already. To deploy the application and start it running:

1.	 Open a command prompt.

2.	 Change directory to the kubernetes\configuration directory in the chapter 10
examples.

3.	 Enter the following command:
kubectl apply -f .

The period at the end of this command means “use the files in the current direc-
tory.” The -f command tells Kubernetes to apply the configuration state defined in
the specified file – in this case, all the files in the configuration directory.

4.	 It will take a little while for all the containers to start up and to connect to the
services. You can check progress by giving the command:
kubectl get pods

When all the pods are running, the output should look something like this:

NAME READY STATUS RESTARTS AGE

credit-service-556b578-hpxdn 1/1 Running 0 25s

credit-service-556b578-nsxnb 1/1 Running 0 24s

postgres-database-78dd556-hg9bg 1/1 Running 0 30s

The pod names in your deployment will be slightly different; when Kubernetes creates
a pod from a deployment, the first part of the name is the same as the deployment name
and the second part is created randomly. If any of the pods don’t start running success-
fully, you can use the kubectl describe command to show the state of the pod, including
a list of the events as it tried to start the container.

Assuming everything is running, we can now take a look at the application running. The
instructions here assume you are using Minikube running locally. To see the application:

00_COBOL2_AM.indb 19500_COBOL2_AM.indb 195 4/19/21 5:08 PM4/19/21 5:08 PM

196  COBOL and Microservices

1.	 Find the IP address Minikube has actually published your service on. From the
command prompt, run:
minikube service credit-service –-url

2.	 This displays a result that looks like: http://192.168.99.101:30850
This URL corresponds to Label 5 on Figure 10-2.

3.	 Browse to the URL in your Web browser to see the “Hello World” confirmation
that the service is running.

4.	 This version of the application, like the one in Chapter 9, has its data de-
fined in a resource, so you can now initialize the database by browsing to
http://192.168.99.101:30850/admin/initialize-db (your IP and port number will be
different than the one shown here). If the database initializes correctly, you should
see the All tables initialized message in the web browser. You can retrieve the
first customer by using the /service/customer/1 path on the end of the URL.

At this point we have a Kubernetes application running and it is exposed outside the
Kubernetes cluster (although it is on a non-standard port). If we wanted to scale up the
number of instances for the credit service, we could do it easily by editing the credit-service
deployment and changing the replicas value from 2. We could also add a Kubernetes
autoscaler and add rules to increase or decrease the number of replicas according to
load. If you want to learn more about Kubernetes, the https://kubernetes.io website has
interactive tutorials in the Documentation section. At the time of writing, there are online
video courses available from Pluralsight and Udemy.

In the next section, we will create a Kubernetes ingress, making the application avail-
able on port 80.

Creating the Ingress
This section is optional as we already have our containerized COBOL application running
and deployed in a Kubernetes cluster. An ingress is a Kubernetes resource that enables
you to publish your Web applications to the standard ports (80 and 443). Although the
ingress resource provides you with a standard way of defining an ingress, the manner in
which they are implemented depends on how a Kubernetes cluster has been deployed. A
Kubernetes cluster deployed out of the box (like our Minikube cluster) does not include an
ingress controller; without an ingress controller, creating an ingress does nothing.

To create an ingress controller on Minikube and then expose the credit-service applica-
tion on port 80 (Label 6 on Figure 10-2):

00_COBOL2_AM.indb 19600_COBOL2_AM.indb 196 4/19/21 5:08 PM4/19/21 5:08 PM

	 Kubernetes    197

1.	 From a command prompt, run:
minikube addons enable ingress

2.	 This deploys an NGINX ingress controller, which can take up to a minute or so
to become fully available. This pod is deployed to the kube-system namespace
rather than the default namespace (where credit-service is deployed). To see the
pods in the kube-system namespace:
kubectl get pods -n kube-system

You are looking for a pod with a name that starts ingress-nginx-controller-. When
this shows with status Running, you can move to the next step.

3.	 In the kubernetes/ingress folder there is an ingress.yaml file. Run:
kubectl apply -f ingress.yaml

4.	 This creates an ingress and assigns an IP address. It can take two or three min-
utes for IP address assignment. Use the command:
kubectl get ingress

5.	 The output shows the name of the ingress, a host name (credit-service.info), an
IP address, and Ports. The IP address field will be blank until Kubernetes has
finished assigning it.

6.	 Once you have a valid IP address, you need to make sure your OS can re-
solve the host-name (credit-service.info) to the IP address. If you were
deploying this on the public web or inside an enterprise network, you would
create a DNS entry. However, since we are running all of this locally, update
the hosts file on your computer. On Linux, this is /etc/hosts. On Windows, it
is C:\Windows\System32\drivers\etc\hosts. You will need administrator privilege
to edit this file.

7.	 Add the following entry to your hosts file:
192.168.99.101 credit-service.info

The IP address should be the one displayed by the kubectl get ingress
command in Step 4 – not the one printed here.

8.	 Go to your web browser and see the application running at
http://credit-service.info.

Viewing Application Logs
Kubernetes treats everything our containers write out to StdOut and StdErr as logs. Fac-
tor 11 from https://12factor.net is “Treat logs as event streams.” One of the things you

00_COBOL2_AM.indb 19700_COBOL2_AM.indb 197 4/19/21 5:08 PM4/19/21 5:08 PM

198  COBOL and Microservices

don’t want to do when running at cloud scale is to connect directly to individual VMs or
containers in order to look at log files.

The Java parts of our application are using a logging framework brought in as part of
the Spring Boot dependencies. By default, Spring Boot configures it to send all log output
directly to the console. We haven’t set up our COBOL application with proper logging (this
was discussed in Chapter 5); we have used display statements. This isn’t good practice,
but it was done here as the most straightforward way to get the example running. It isn’t
good practice because a logging framework can be configured to add useful extra infor-
mation to every log statement (for example, a timestamp) as well as allow you to configure
the verbosity of your log output. An application running in production might be configured
only to output warnings and errors, whereas when you are debugging an application, you
might want to see extra information.

We can see the recent log output for the credit-service application by running this
command:

kubectl logs -l app=credit-service

This displays the logs for all pods labeled app=credit-service. You can see the output
for an individual pod by giving the name of the pod instead, for example (your pod name
will be different as they are randomly assigned):

kubectl logs credit-service-556b578777-hpxdn

You can also tail the logs so that you can see new output as it is written:

 kubectl logs -l app=credit-service –-follow

If you have followed all the steps in this section, you have deployed a COBOL application
to Kubernetes, connected it to a database, and made it available (locally at least) through
http. Although some of the details would be different, you would follow the same steps to
build an application and run it on a Kubernetes cluster hosted in the public cloud or inside
a datacenter. For simplicity, we’ve chosen to make our application pure JVM (it doesn’t
use any of functionality from the COBOL native run-time), but Micro Focus provides its
own Docker images that can be used to build your own application container. This would
give you the option, for example, of using the native file handler for higher performance
when using ISAM files.

In the next section, you will learn a completely different approach to deploying an
application: serverless computing.

00_COBOL2_AM.indb 19800_COBOL2_AM.indb 198 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    199

Serverless Computing
Serverless computing is a way to deploy applications that is very different to anything we
have looked at so far. In serverless computing, you deploy individual API functions to a
service that will run those functions on demand. There is no server for you to maintain or
container for you to build; keeping the underlying infrastructure patched and up-to-date is
the responsibility of the vendor.

All major public cloud vendors provide their own versions of serverless computing.
There also are also some PaaS offerings that run inside the data center that offer server-
less deployments. Serverless computing is very attractive for services that have widely
varying demand requirements. When a serverless function isn’t in use, it doesn’t consume
any compute or memory at all; it is loaded only when it is called. During periods of high
demand, a serverless function can be scaled out to hundreds or thousands of concurrent
instances as needed.

Serverless computing is a new form of cloud computing, but at the time of this writing,
it is mature enough to be considered for any production jobs that fit its niche character-
istics. Serverless computing has both its disadvantages and its benefits. There isn’t a
standardized model for serverless computing, so you might get locked into one vendor,
particularly as your application becomes more complex. You don’t have any visibility into
the infrastructure where your application is deployed, so you are putting more trust into
the vendor than when you are consuming IaaS.

The example here uses AWS Lambda and an API Gateway. If you want to follow along
with the example, you will need an AWS account. Creating a new AWS account requires
a credit card, but you can follow this example within the free allowance provided by AWS
so that you don’t incur any charges.

We will not deploy the entirety of the credit-service application to AWS Lambda. The
set of REST endpoints provided by the credit-service application is better offered as a
microservice than as a set of separate serverless functions. Instead, we will provide only
the StatementCalculator function to work out monthly interest. This is a relatively compute-
heavy function that has high load demands once a month. It is used very little the rest of
the time, so it is a good candidate for a serverless function.

Changing the Application
We are going to refactor the application before deploying it. At the moment, the Statement-
Calculator is tightly bound to ACCOUNT-STORAGE-ACCESS, which retrieves all the transaction
information. Connecting our serverless function to a database increases the complexity
(and cost) of the deployment. Instead, this serverless function will receive a JSON object
that includes all the transactions for calculating monthly interest for a statement.

00_COBOL2_AM.indb 19900_COBOL2_AM.indb 199 4/19/21 5:08 PM4/19/21 5:08 PM

200  COBOL and Microservices

We are not going to make any changes to the InterestCalculator itself – the business
rules it embodies are well tested and well understood. Instead we are going to modify the
InteroperationLayer and provide a different implementation of ACCOUNT-STORAGE-
ACCESS. Figure 10-3 shows how the serverless function is implemented.

LambdaProxy

InterestCalculatorFunction

BusinessInterop

MonthlyInterest

InterestCalculator

StatementCalculator

AccountStorageAccess

Parameters

Parameters

Transactions

Figure 10-3  The StatementCalculator as a serverless function

There are three projects and each will be built into a single jar by Maven using
the pom.xml in the LambdaProxy project. The LambdaProxy project provides an
InterestCalculatorFunction class that has a handleApiRequest() method that will be
invoked when the function is called.

The data to this function will include the same parameters that we passed for interest
calculation in previous versions of the CreditService application (day-rate, starting amount,
accountId, and start date). It will also include an array with all the transactions for the
account and month we want to calculate. The only reason we pass an account Id and start
date as well is for the original StatementCalculator code; this code remains unchanged
and expects those parameters and won’t function without them.

The handleApiRequest() method, in turn, calls the MonthlyInterest::init() method in the
BusinessInterop project. This has been modified from the version in previous versions of
the CreditService application with an extra argument – the array of transactions. It passes
these to a modified version of the ACCOUNT-STORAGE-ACCESS program that stores them.

When the MonthlyInterest class invokes the StatementCalculator program, it passes
the set of parameters the StatementCalculator expects. The StatementCalculator then
performs the calculation, calling the OPEN-TRANSACTION-FILE and FIND-TRANSACTION-BY-
ACCOUNT entry points in ACCOUNT-STORAGE-ACCESS as it always has done. These return the
transactions one at a time from the list already passed to it. The StatementCalculator works
through the business rules to calculate the interest just as it always has and returns the
result. Listing 10-4 shows the modified init() method from the MonthlyInterest class in
the interoperation layer.

Listing 10-4  The MonthlyInterest init() method

method-id init (dayRate as decimal, startingAmount as decimal,

 startDate as type LocalDate,

 accountId as binary-long

00_COBOL2_AM.indb 20000_COBOL2_AM.indb 200 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    201

 transactions as type List[type TransactionDto]).

 copy “TRANSACTION-RECORD.cpy” replacing ==(PREFIX)== by ==LS==.

 declare recordList as type List[binary-char occurs any]

	 = new ArrayList[binary-char occurs any]

 declare recordBytes = GetByteArray

 set self::dayRate to dayRate

 set self::startingAmount to startingAmount

 set self::startDate to startDate

 set self::accountId to accountId

 set initialized to true

 call “ACCOUNT-STORAGE-ACCESS”

 perform varying nextTransaction as type TransactionDto

 through transactions

 invoke nextTransaction::getAsTransactionRecord

 (LS-TRANSACTION-RECORD)

 move LS-TRANSACTION-RECORD to recordBytes

 invoke recordList::add(recordBytes)

 end-perform

 call SET-TRANSACTION-DATA using by value recordList

 end method.

You can see the extra argument at the end, the list of TransactionDto objects (each
TransactionDto represents a single transaction). The method stores all the parameters it
has been passed, converts each TransactionDto object into the COBOL record layout
defined for transactions and puts them in a new list. It then calls the SET-TRANSACTION-DATA
entry point in ACCOUNT-STORAGE-ACCESS.

Listing 10-5 shows the entire ACCOUNT-STORAGE-ACCESS program. What was formerly
quite a long program — first for managing ISAM files and then for making database access
look like ISAM files — is now very short.

Listing 10-5  The ACCOUNT-STORAGE-ACCESS program

$set ilusing(java.util)

 program-id. ACCOUNT-STORAGE-ACCESS.

 data division.

 working-storage section.

 copy “PROCEDURE-NAMES.cpy”.

 01 transaction-index binary-long.

 01 transaction-list type List[binary-char occurs any].

 linkage section.

 01 LNK-STATUS.

 03 LNK-FILE-STATUS-1 PIC X.

00_COBOL2_AM.indb 20100_COBOL2_AM.indb 201 4/19/21 5:08 PM4/19/21 5:08 PM

 03 LNK-FILE-STATUS-2 PIC X.

 01 LNK-TRANSACTION-LIST type List[binary-char occurs any].

 copy “FUNCTION-CODES.cpy”.

 copy “TRANSACTION-RECORD.cpy” replacing ==(PREFIX)== by ==LNK==.

 procedure division.

 goback.

 ENTRY OPEN-TRANSACTION-FILE using by VALUE LNK-FUNCTION

 by reference LNK-STATUS

 move “00” to LNK-STATUS

 goback.

 ENTRY SET-TRANSACTION-DATA using by value lnk-transaction-list.

 move LNK-TRANSACTION-LIST to transaction-list

 goback.

 ENTRY FIND-TRANSACTION-BY-ACCOUNT using by value LNK-FUNCTION

 by reference LNK-TRANSACTION-RECORD

 LNK-STATUS

 evaluate LNK-FUNCTION

 when START-READ

 if transaction-list = null or transaction-list::size = 0

 move “23” to LNK-STATUS *> No records

 else

 move 0 to transaction-index

 move “00” to LNK-STATUS

 end-if

 when READ-NEXT

 move “00” to LNK-STATUS

 if transaction-index < transaction-list::size

 declare next-record

 = transaction-list::get(transaction-index)

 set LNK-TRANSACTION-RECORD to next-record

 add 1 to transaction-index

 if transaction-index < transaction-list::size

 move “02” to LNK-STATUS *> more records

 end-if

 end-if

 end-evaluate

 goback.

00_COBOL2_AM.indb 20200_COBOL2_AM.indb 202 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    203

It has an OPEN-TRANSACTION-FILE entry point that always returns a “00” success status
(because there is no file or database to fail to open). It has a SET-TRANSACTION-DATA entry
point that stores the list of transactions. And it has a FIND-TRANSACTION-BY-ACCOUNT entry
point that returns the transactions from the list. The new code mimics the same behavior
as the original version of the application that read the records from an ISAM file, returning
the same status codes as before.

The Java Lambda Function Handler
Setting up a Lambda function in AWS consists of:

	■ Defining the function

	■ Uploading the code for the function

	■ Connecting the function to a trigger event

There are several ways of triggering a Lambda function. For example, you can create a
new object in an S3 bucket or post a message onto a queue. The code that is called by
AWS Lambda is effectively an event handler; it will receive information about the event
that triggered it.

Different types of events require you to write different kinds of event handlers. AWS
provides sample code that shows you how to write these different kinds of event handlers
in the various languages supported by Lambda.

A serverless function is not the same as an HTTP endpoint; as previously stated, it is
an event handler that responds to an event. We will first define the function and then test
it using the AWS Lambda dashboard.

Then, to expose the functionality as an HTTP endpoint, we will connect our function
to an AWS API Gateway. The API gateway will define a REST endpoint that expects an
HTTP POST. The body of the POST request will contain JSON that defines all the data
needed for the interest calculation.

When we POST a request to the endpoint, the Lambda function is invoked and it re-
ceives a payload of data from the Gateway; the payload includes the body of the POST
request. Figure 10-4 shows the flow from the POST request hitting the endpoint defined
in the API gateway, through the payload being sent to the Lambda function and then the
actual code to do the work getting invoked.

00_COBOL2_AM.indb 20300_COBOL2_AM.indb 203 4/19/21 5:08 PM4/19/21 5:08 PM

204  COBOL and Microservices

POST request

LambdaProxy

InterestCalculatorFunction
handleApiRequest()

MonthlyInterest StatementCalculator

AccountStorageAccess

http endpoint

API Gateway

Figure 10-4  The API Gateway and Lambda function

The API gateway handles all the HTTP communication and response. It will also provide
you with an encrypted HTTPS connection; you have the option of configuring different types
of authentication and authorization for your endpoints. This enables you to secure your
application with the gateway doing most of the heavy lifting; you are free to concentrate
on writing your application code.

The handleApiRequest() method has three arguments:

	■ An InputStream

	■ An OutputStream

	■ A Context object

The Context object provides your function with some metadata about itself as well
as a logger object. Listing 10-6 shows the handleApiRequest() method from class
InterestCalculatorFunction.

Listing 10-6  The handleApiRequest() method

 public void handleApiRequest(InputStream inputStream,

 OutputStream outputStream, Context context)

 throws IOException {

 BufferedWriter writer = new BufferedWriter(

 new OutputStreamWriter(outputStream));

 try {

 LambdaLogger logger = context.getLogger();

 logger.log(“handleApiRequest”);

 Gson gson = new GsonBuilder().setPrettyPrinting()

00_COBOL2_AM.indb 20400_COBOL2_AM.indb 204 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    205

 .create();

 JsonObject o = JsonParser

 .parseReader(new InputStreamReader(inputStream))

 .getAsJsonObject();

 JsonElement element = o.get(“body”);

 if (element == null) {

 logger.log(“No body element found”);

 } else {

 logger.log(element.toString());

 }

 String unescapedBody = StringEscapeUtils

 .unescapeJson(element.toString());

 String unwrappedRequest = StringUtils

 .unwrap(unescapedBody, ‘”’);

 CalculationRequest request = gson.fromJson(

 unwrappedRequest, CalculationRequest.class);

 if (request == null) {

 logger.log(“No calculation request found”);

 } else {

 logger.log(request.toString());

 }

 StatementDto dto = doCalculation(request);

 if (dto == null) {

 logger.log(“No DTO returned”);

 }

 String json = gson.toJson(dto);

 writer.write(json);

 } catch (Exception e) {

 logger.log(e.getMessage());

 } finally {

 writer.close();

 }

 }

The InputStream passed to this function contains the text for a JSON object that includes
the HTTP headers sent to the endpoint, a timestamp, and other information that might be
useful. It also includes the request body; the API Gateway encodes this as a JSON object.
The body we have passed in is already a JSON object, so the body has to be unescaped
before it can be properly decoded.

Most of the code in Listing 10-6 is actually parsing the JSON, unescaping the body
field, and then parsing that as a JSON object. The LambdaProxy project includes a class

00_COBOL2_AM.indb 20500_COBOL2_AM.indb 205 4/19/21 5:08 PM4/19/21 5:08 PM

206  COBOL and Microservices

called CalculationRequest; this is really just a Data Transfer Object (DTO) with fields that
correspond to all the parameters needed to request a calculation statement.

The Gson object deserializes the JSON from the input stream into a CalculationRequest
that is then used to call the Interoperation Layer. A separate doCalculation() method (not
shown here) converts the CalculationRequest into the parameter format the MonthlyInterest
class expects.

Testing the Code
If you haven’t already done so, download the Chapter 10 example code and import all the
projects under the serverless directory into Eclipse. As well as the projects to build our
Lambda function, we’ve included the test projects from earlier chapters (although the tests
themselves have now been slimmed down to include only tests for interest calculations).

We’ve also made some changes to the tests as they now have to pass in all the transac-
tions to run a test rather than the business logic reading the data in from elsewhere. But
because there are no files to open or databases to connect to, you can run the tests without
needing to set up complex run configurations. For example, to run the BusinessSystemTests,
just right-click the project and choose Run As > COBOL JVM Unit Test. The only thing
you might need to fix (as in earlier chapters) is the Maven builders used to put the jars for
the BusinessInterop and InterestCalculator projects into the Maven repository.

The LambdaProxy project also has a test class called ProxyWithStreamTest. This reads
a JSON text file in from resources/gateway-stream.json and invokes InterestCalculator-
Function.handleApiRequest(). The contents of this JSON file follow the same format as the
JSON input streams sent by the API gateway and give us an end-to-end test that helps us
assess whether our code behaves as expected before we upload it to AWS.

Right-click the LambdaProxy project and choose Run As > JUnit test to run the
tests. You can set breakpoints and debug these tests if you want to get a better feeling for
how the code works. Getting the code to work was an iterative process; to find out exactly
what the JSON sent from the API Gateway would look like, I deployed the AWS Lambda
Java “Hello World” application and connected it to an API Gateway endpoint. Then I used
Postman to send POST requests containing a JSON body for my calculation request and
logged the information sent to the application so that I could see exactly what the data
sent from the API Gateway looked like.

These logs were also used to create the sample data used for the test. In the next
section, we will build and deploy the application.

00_COBOL2_AM.indb 20600_COBOL2_AM.indb 206 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    207

Building and Deploying the Lambda Function
We don’t need to build a container to deploy our Lambda function, but we do need to create
a fat jar with all the Java dependencies it needs to run. From a Visual COBOL command
prompt (on Windows) or a shell terminal with COBDIR set on Linux, go to the serverless/
LambdaProxy directory and run:

mvn clean package

This builds the package, runs the tests, and creates the jar file.
To deploy the Lambda function:

1.	 Log in to your AWS Account.

2.	 From the AWS Management Console page, go to the Lambda page (if you can’t
find it, type lambda into the Find Services field and click the Lambda link).

3.	 Click the Create Function button.

4.	 Select Author from scratch and, in the Function name field, type
InterestCalculator.

5.	 Select Java 8 as the Runtime.

6.	 At the bottom of the page, click Create function. The Configuration page for
InterestCalculator appears.

7.	 Scroll down to the Basic settings box and click the Edit button.

8.	 You must change the Handler field to specify the class and method to be invoked
when the Lambda function is triggered:
com.mfcobolbook.lambda.InterestCalculatorFunction::

handleApiRequest
(all on one line). You can also add a description like “Calculate Monthly Interest”
into the Description field.

9.	 Click Save.

10.	 In the Function code box, click Actions > Upload a .zip or .jar file.
Ignore the message in this box indicating that the function editor does not sup-
port Java code. This is because Java functions are uploaded as compiled bina-
ries that cannot be edited. When you use an interpreted language like Python or
JavaScript for Lambdas, you upload source code that you can edit here.

11.	 Click Upload, select LambdaProxy-1.0.0.jar in the File dialog, click Open or
Ok in the File dialog, and then click Save on the Web page.

00_COBOL2_AM.indb 20700_COBOL2_AM.indb 207 4/19/21 5:08 PM4/19/21 5:08 PM

208  COBOL and Microservices

You have now created a Java Lambda function (that is actually using COBOL business
logic to perform a calculation). To test the function is configured correctly:

1.	 At the top of the InterestCalculator configuration page, note the Select a Test
Event drop-down field to the right of the page, which says Select a Test Event.

2.	 Click the field and click Select Test Event. There are no events, so you will see
a Configure test event dialog.

3.	 Select Create new test event and name your event Calculation1.

4.	 Using either Eclipse or a text editor, open the gateway-stream.json file from
the LambdaProxy test/resources folder. Select the entire contents and then
paste them into text edit area in the Configure test event dialog.

5.	 Click Create.

6.	 Now click the Test button to the right of the page. This invokes the function with
the test data we just configured, and if everything has worked, you should see
Execution result: succeeded.

7.	 You can expand the details to see what was returned from the function. You can
also click the Logs link at the top to go through to a Cloudwatch page where you
can drill down into the log stream for the application.
If the execution failed rather than succeeded, this should help you work out
where things went wrong.

Once the function is running, you can go through to the next section and configure the
API Gateway.

Configure the API Gateway
You now have a working Lambda function, but you need to make it accessible for it to be
useful. We will create a single REST endpoint using the AWS API Gateway. Because we
are doing this in the simplest possible way, your endpoint will be available on the public
web and will not be secured (anyone can invoke the endpoint without needing to authen-
ticate themselves). Because of this, I advise you not to leave the endpoint open after you
have finished trying it out. The odds of it happening are low, but in theory, a malicious party
could hit your endpoint repeatedly, running your function until you start to incur charges
on your AWS account.

This is unlikely to happen while you are trying things out, but any public endpoint on the
web is discovered by all sorts of crawlers and bots eventually, and public endpoints are
often repeatedly invoked by automated scripts looking for vulnerabilities. So, if you leave
the endpoint open for weeks and months, you might end up with a bill for Gateway and
Lambda usage that you didn’t expect.

00_COBOL2_AM.indb 20800_COBOL2_AM.indb 208 4/19/21 5:08 PM4/19/21 5:08 PM

	 Serverless Computing    209

To set up and test the Gateway:

1.	 From the InterestCalculator configuration page, at the right side of the
Designer box, click the Add trigger button.

2.	 Select API Gateway from the drop-down.

3.	 Click Create an API in the API drop-down.

4.	 Select HTTP API as the API type.

5.	 Set the security to Open.

6.	 Click Add.

7.	 At the bottom of the InterestCalculator page, there is now an API Gateway
box, with InterestCalculator-API.

8.	 Under details, there is an API endpoint. It ends in the path
/default/InterestCalculator. Copy the endpoint.

9.	 Open up Postman. (We used Postman in earlier chapters to test our REST
endpoints.)

10.	 Create a POST request in Postman with the endpoint you just copied.

11.	 Add a header Content-Type with value application/json

12.	 Under Body, select raw, and then paste in the contents of
serverless/calculation-request-data.json.

13.	 Click Send.

You should see this response:

{

 “minimumPayment”: 22.29,

 “endingAmount”: 445.87,

 “interestAmount”: 1.96,

 “accountId”: 0,

 “startDate”: {

 “year”: 2019,

 “month”: 7,

 “day”: 1

 }

}

You have just run an interest calculation written in COBOL over the public Web using
a serverless function! If you had to do 100,000 of these calculations in a short amount of
time, as you sent in more and more requests, AWS would create many concurrent instances
of your function to manage the load; the calculations would be completed faster than if you
were relying on just one or two instances of the running application.

00_COBOL2_AM.indb 20900_COBOL2_AM.indb 209 4/19/21 5:08 PM4/19/21 5:08 PM

210  COBOL and Microservices

Don’t forget to go to the API gateway page and delete your endpoints once you no
longer want them to be accessible. Alternatively, you could experiment with adding JWT
authorization to the API to secure it from unauthorized users.

Conclusion
In this chapter, you learned two ways of exploiting legacy COBOL code in scalable cloud
environments. The example application is much simpler than most real COBOL applica-
tions, but at the end of this book, I hope you are left with a sense of the possibilities that
recompiling COBOL to modern run-times can bring. The key points I would like readers
to take away are:

	■ Visual COBOL greatly simplifies the consumption of legacy applications in modern
architectures.

	■ MFUnit makes writing automated tests for procedural legacy COBOL easier – and
automated tests make it possible to refactor code safely.

	■ You can refactor your applications to preserve complex business rules written in
COBOL and run them in microservice architectures.

I hope you’ve enjoyed reading this book as much as I’ve enjoyed writing it.

00_COBOL2_AM.indb 21000_COBOL2_AM.indb 210 4/19/21 5:08 PM4/19/21 5:08 PM

211

Index

Symbols
12 factor applications (cloud-native applications) 159
15-factor application (cloud-native applications) 159

A
AbstractBusinessAccess class (REST Service)

71–75
abstract test class 121–122
accessing data

REST Service
AbstractBusinessAccess class 71–75
AccountController class 89–92
AccountStorageAccess class 76–83
application components 67–70
data access and transfer classes 71
interoperation layer 70
iterators 83–85
MonthlyInterest class 85–88
Spring Boot 88
StatementController class 95–97
testing endpoints 93–95
WebServiceApplication class 89–90

accessing files, indexed files 45–53
declaring files and data 45–47
opening a file 52–53
procedure division entry point 47–48
reading and writing files 49–51
reading a record 52–53
writing records 52

AccountController class (REST Service) 89–92
AccountDataAccess class 71

AccountDto wrapper class 79
ACCOUNT-RECORD.cpy copybook 44
accounts() method 91
account-SORAGE-ACCESS program

accessing files
reading and writing files 49–51

AccountStorageAccess class (REST Service)
76–83, 77

adding, updating, and deleting records 77–79
procedure-pointers 76–77
reading and finding records 79–83

ACCOUNT-STORAGE-ACCESS program 41
accessing files 45–53

declaring files and data 45–47
opening a file 52–53
procedure division entry point 47–48
reading and writing files 49–51
reading a record 52–53
writing a record 52

calling COBOL programs from Java 61–65
account storage test case code

BusinessRules Layer, automated testing 113–114
Active Server Pages (ASP) 129
addAccount() method 77
Add Customer button, React 146–148
AddCustomerForm component 146–148
AddCustomerForm dialog, React 148–151
Add New button 147
Amazon Elastic Computer Cloud (EC2) 158
Amazon Web Services (AWS), S3 174
Angular 130, 137
ANSI 85 COBOL standard 21
API Gateway

Lambda function 204

00_COBOL2_AM.indb 21100_COBOL2_AM.indb 211 4/19/21 5:08 PM4/19/21 5:08 PM

212  ﻿

serverless computing 208–210
App() function (App.js files) 139
App.js file 139
applications 30

automated testing 99
BusinessRules Layer 107–117
downloading test examples 100–101
end-to-end tests 120–126
Interoperation Layer 117–120
MFUnit 101–107
strategies 99–100

containerizing applications 155
changing from ISAM to a database 161–173
cloud-native applications 158–159
containerizing the CreditService 175–183
containers 156–157
microservice architectures 160–161
running revised CreditService application

173–175
modernizing with Visual COBOL 30–31
REST Service

AbstractBusinessAccess class 71–75
AccountController class 89–92
AccoutStorageAccess class 76–83
application components 67–70
data access and transfer classes 71
interoperation layer 70
iterators 83–85
MonthlyInterest class 85–88
Spring Boot 88
StatementController class 95–97
testing endpoints 93–95
WebServiceApplication class 89–90

sample application 41
calling COBOL from Java 61–65
data storage in indexed files 43–53
generating data 59–61
Interest-Calculator program 54–60

user interface (UI) modernization
Credit Service application 130–135
React 135–154
Single-Page Web applications 128–130
UI choices 127–128

architecture
microservices 160–161

arguments
handleApiRequest() method 204

arguments, calling COBOL programs 30
artifact ID (identifiers) 10
ASP (Active Server Pages) 129
asynchronous programming 143–144
AutoCloseable interface 74
automated testing 99

BusinessRules Layer

account storage test case code 113–114
interest calculator test case code 114–117
legacy code 117
test case setup code 111–112

downloading test examples 100–101
end-to-end tests 120–126
Interoperation Layer 117–120
MFUnit 101–107
strategies 99–100

AWS (Amazon Web Services), S3 174

B
BDD (Behavior Driven Development) 125
@BeforeClass annotation 123
Behavior Driven Development (BDD) 125
binary large object. See BLOB
bin directory 6
block structures, structured programming 30
Booleans 23
Bootstrap 138
browser developer tools 133
Build Properties window 8
BusinessRules Layer, automated testing

account storage test case code 113–114
interest calculator test case code 114–117
legacy code 117
test case setup code 111–112

BusinessRules project 42
BusinessSystemTests 167–170
by content, passing arguments 36
by reference, passing arguments 35
byte code 20
by value, passing arguments 35

C
– calculateArea() method 25
calculator test suite 103–105
Calendar 41
CALL prototypes 36
call statements, COBOL program structure 36
cancel verb 30
case sensitivity

source formats 23
CDN (Content Delivery Network) 131
CI/CD (Continuous Integration/Continuous Delivery)

pipeline 181
CI (Continuous Integration) systems 100
Circle class 24
classes

00_COBOL2_AM.indb 21200_COBOL2_AM.indb 212 4/19/21 5:08 PM4/19/21 5:08 PM

	 ﻿    213

HelloWorldProcedural.class 6
object model 23
Visual COBOL 24–25

class headers 24
CLI (Command Line Interface), Kubernetes 188
close() method 75
cloud environments

containerizing applications 155–161
changing from ISAM to a database 161–173
cloud-native applications 158–159
containerizing the CreditService 175–183
containers 156–157
microservice architectures 160–161
running revised CreditService application

173–175
cloud-native applications 158–159
Cloud Native Computing Foundation (CNCF) 187
CloudService application

containerizing for cloud environment
cloud-native applications 158–159
microservice architectures 160–161

CNCF (Cloud Native Computing Foundation) 187
cobjrun command 6
COBOL command prompts 6
COBOL dialects 19–20
COBOL Explorer window 8
COBOL Perspective 8
COBOL programs

calling from Java 61–65
structure 31

data division 32–34
procedure division 34–38

COBOL source formats 21–23
cobsetenv command 8
code

creating JVM projects with Maven 13–14
command 177
Command Line Interface (CLI), Kubernetes 188
Command-line URL (cURL) 93
commands

cobjrun 6
COBOL command prompts 6
cobsetenv 8

Comma Separated Variable (CSV) files 166
comments

source formats 22–23
compiler directives

COBOL dialects 20
componentDidMount() function 143
components

consuming
creating Java projects with Maven 16–18

components, React 138–140
CustomerList component 144–146

MainPage component 140–144
ConfigMaps, Kubernetes 190
constructors (classes) 25
consuming

components
creating Java projects with Maven 16–18

container images 176–178
containerizing applications 155–161

changing from ISAM to a database 161–173
creating databases 163–164
exporting data 166
installation on Native OS 162
OpenESQL syntax 164–165
PostgreSQL 161
revised application 166–167
running tests 167–170

cloud-native applications 158–159
containerizing the CreditService 175–183

container images 176–178
running the application 178–181
scripts 181–183

containers 156–157
microservice architectures 160–161
running revised CreditService application 173–175

containers 156–157
Content Delivery Network (CDN) 131
Context argument (handleApIRequest() method 204
Continuous Integration (CI) systems 100
Continuous Integration/Continuous Delivery (CI/CD)

pipeline 181
conventions

MFUnit test suites 105
copybooks 38–40
copyDataResource() helper method 122
copy files 38–40
copy... replacing statements 38
copy verb 38
CORS (Cross Origin Resource Sharing) policy 134
createdb command 164
creating

JVM projects
Eclipse 7–9

CreditController tests 125–126
Credit Service application 130–135

cross-origin resource sharing 133–135
running the application 132–134

CreditService application
containerizing for cloud environment 155–161,

175–183
changing from ISAM to a database 161–173
containers 156–157
running revised CreditService application

173–175
running as Kubernetes application 189–190

00_COBOL2_AM.indb 21300_COBOL2_AM.indb 213 4/19/21 5:08 PM4/19/21 5:08 PM

214  ﻿

credit-service-form application 132
React 138

CreditService tests
changing from ISAM to a database 172–173

cross-origin resource sharing 133–135
Cross Origin Resource Sharing (CORS) policy 134
cross-site scripting (XSS) 134
CSV (Comma Separated Variable) files 166
cURL (Command-line URL) 93
custom builders

creating JVM projects with Maven 14–16
CustomerDataAccess class 71
Customer() function 145
CustomerList component, React 144–146
CUSTOMER-RECORD.cpy copybook 44
customerSelected() function 145

D
DAC (dedicated administrator connection). See DAC
data

copybooks 38–40
declarations 32–33
enabling access with REST Service

AbstractBusinessAccess class 71–75
AccountController class 89–92
AccountStorageAccess class 76–83
application components 67–70
data access and transfer classes 71
interoperation layer 70
iterators 83–85
MonthlyInterest class 85–88
Spring Boot 88
StatementController class 95–97
testing endpoints 93–95
WebServiceApplication class 89–90

group items 33–34
storage

indexed files 43–53
databases

changing from ISAM to a database 163–164
DataBuilder project 42
data declarations 32–33
data division, COBOL program structure

data declarations 32–33
group items 33–34

DataMigrationTool 166
data records 30
day two issues 187
decimal arithmetic 30
declarations

files and data (indexed files) 45–47
declaring data, COBL programs 33

dedicated administrator connection. See DAC
deleteAccount() method 77
deploying

Kubernetes application 195–196
deployment entities, Kubernetes 189
developer tools, browsers 133
development environments, React 135–136
Development Hub (Visual COBOL) 3
dialects (Visual COBOL) 19–20
docker build command 178
docker-compose command 181
Docker Desktop 156
Dockerfiles 177
docker network create app-network command 179
docker push command 178
docker rm postgres command 180
docker run --name postgres --network app-network

command 180
docker stop postgres command 180
Document Object Model (DOM) 128
Domain Driven Design 161
DOM (Document Object Model) 128
downloading test examples 100–101

E
EC2 (Amazon Elastic Computer Cloud) 158
Eclipse 3

creating COBOL JVM projects 7–9
starting

Linux 8
Windows 8

Eclipse IDE 3
endpoints, testing 93–95
end-to-end tests, applications 100, 120–126
Enterprise Analyzer 160
entry points

accessing files 47–48
order of execution 106

entry points (COBOl programs) 35–38
environment division , COBOL program structure 31
event handlers 152–153
exceptions

Visual COBOL 26–27
executable code 20
exit statements, COBOL program structure 38
Explorer window 8
exporting data

changing from ISAM to a database 166
extending applications, React 146

00_COBOL2_AM.indb 21400_COBOL2_AM.indb 214 4/19/21 5:08 PM4/19/21 5:08 PM

	 ﻿    215

F
fakes (Test Double) 100–101
fat jar 177
Fetch API 138
fetch() function 143
fields

Visual COBOL 24
file access, indexed files 45–53

declaring files and data 45–47
opening a file 52–53
procedure division entry point 47–48
reading and writing files 49–51
reading a record 52–53
writing records 52

files
.jar 12
mfcobol.jar 13
mfcobolrts.jar 13
native code files 20
pom.xml (Maven) 10

file section, COBOL program structure 32
forEach() method 85
Formik 138
FUNCTION-CODES.cpy 74
function-status flag 112

G
generating data 59–61
getAccount() method 83
getAsAccountRecord() method 79
getLastAccount() method 79
@GetMapping annotation 91
get() method 124
.gitignore file 136
given() method 125
goback statements, COBOL program structure 38
group ID (identifiers) 10
group items 33–34

H
handleApiRequest() method 200

arguments 204
Hello World 5–7

writing as a class 7
HelloWorldProcedural.class 6
HELPER-FUNCTIONS program 111–112
helper methods

abstract test class 122

high-precision decimal arithmetic 30
horizontal scalability, cloud-native applications 155
Hyper-V 187

I
IaaS (Infrastructure-as-a-Service) 158
identification division, COBOL program structure 31
identifiers (POM files) 10
import statements (App.js files) 139
indexed files 43–53

accessing files 45–53
declaring files and data 45–47
opening a file 52–53
procedure division entry point 47–48
reading and writing files 49–51
writing records 52

reading records 52–53
Indexed Sequential Access Method (ISAM) 30, 43
Infrastructure-as-a-Service (IaaS) 158
ingress, Kubernetes 190, 196–197
init() method 200
initTestData() helper method 122
InputStream argument (handleApIRequest() method

204
installation

Kubernetes 187
installing

Maven 11
integration tests 100
IntelliJ 101
Interest Calculator

BusinessRules Layer, automated testing
test case code 114–117

Interest-Calculator 41
InterestCalculatorFunction class (LambdaProxy project)

200
Interest-Calculator program 54–60
internal modifiers 24
internal repositories (Maven) 10
interoperation layer

accesing data with REST Service 70
Interoperation Layer, automated testing 117–120
interoperation tests

changing from ISAM to a database 170–172
InteropTests, setup code 119–120
ISAM

changing to a database 161–173
creating databases 163–164
exporting data 166
installation on Native OS 162
OpenESQL syntax 164–165
PostgreSQL 161

00_COBOL2_AM.indb 21500_COBOL2_AM.indb 215 4/19/21 5:08 PM4/19/21 5:08 PM

216  ﻿

revised application 166–167
running tests 167–170

ISAM (Indexed Sequential Access Method) 30, 43
iterator() method 84
iterators 83–85

J
.jar files 12
jar files 177
Java

calling COBOL programs 61–65
Java Development Kit (JDK) 5
Java Lambda function handler 203–206
Java Native Interface (JNI) 31
Java projects

creating with Maven
adding COBOL componet to repository 12–13
adding code 13–14
adding custom builders 14–16
consuming the component from Java 16–18
project structure 12
running the application 18

Javascript 129
desktop applications 130

Java Servlet Pages (JSP) 129
Java Virtual Machine (JVM) 1, 20
JDK installation 3
JDK (Java Development Kit) 5
Jenkins 181
JNI (Java Native Interface) 31
JSP (Java Servlet Pages) 129
JSX (Javascript syntax) 139
JUnit 101
JVM (Java Virtual Machine) 1, 20
JVM projects

creating in Eclipse 7–9
jvmsourcebase directive 26
JVM test suite, running 107

K
Kernel Virtual Machine (KVM) 188
kubectl apply -f command 195
kubectl create deploy command 191
kubectl get nodes command 188
kubectl logs -l app=credit-service command 198
Kubernetes (K8S) 187–198

application changes 190–191
creating the ingress 196–197
defining the application 191–195

deploying the application 195–196
installation 187
running CreditService as Kubernetes application

189–190
viewing application logs 197–198

KVM (Kernel Virtual Machine) 188

L
Lambda function

API Gateway 204
serverless computing 207–208

Lambda function handler 203–206
LambdaProxy project 200
legacy code

testing with MFUnit 117
lifecycle, containers 179
linkage section (COBOL programs) 30, 32
Linux

starting Eclipse 8
literals

source formats 23
local repositories (Maven) 10
local-storage (COBOL programs) 30, 32
logs

Kubernetes 197–198

M
main() method 25
MainPage class 140
MainPage component, React 140–144
MainPage render() function 147
managed code 20–21
map() function 145
Maven

creating JVM projects
adding COBOL componet to repository 12–13
adding code 13–14
adding custom builders 14–16
consuming the component from Java 16–18
project structure 12
running the application 18

installation 11
introduction 10–11
support for JUnit 101

metadata 20
methods 24

– calculateArea() 25
main() 25

mfcobol.jar file 13

00_COBOL2_AM.indb 21600_COBOL2_AM.indb 216 4/19/21 5:08 PM4/19/21 5:08 PM

	 ﻿    217

mfcobolrts.jar file 13
MF-TC-METADATA-SETUP-PREFIX (test case meta-

data function) 106
MFUnit

testing legacy code 117
testing procedural COBOL 101–107

running test suites 102–107
MFU-TC-SETUP-PREFIX (test case setup function)

105
MFU-TC-TEARDOWN-PREFIX (tet case teardown

function) 105
Micro Focus compiler

support for COBOL dialects 20
Micro Focus Enterprise Analyzer 160
Micro Focus Enterprise Developer 8
Micro Focus Team Developer 8
Micro Focus Unit Testing pane 107
Micro Focus Visual COBOL 8
microservices 185

architecture 160–161
Kubernetes 187–198

application changes 190–191
creating the ingress 196–197
defining the application 191–195
deploying the application 195–196
installation 187
running CreditService as Kubernetes application

189–190
viewing application logs 197–198

platform necessity 185–187
serverless computing 199–210

building and deploying Lambda function
207–208

changing the application 199–203
configuring API Gateway 208–210
Java Lambda function handler 203–206
testing code 206

Microsoft SQL Server. See SQL Server
Minikube 187
minikube addons enable ingress command 197
mocks (Test Double) 100–101
modernizing

COBOL applications 30–31
monolithic applications 160
MonthlyInterest class (REST Service) 85–88
MonthlyInterest::init() method (BusinessInterop project)

200
mvn clean package command 207
mvn package command 182

N
namespaces

Visual COBOL 26–27
native code files 20
.NET Common Language Runtime (CLR) 20
Node.js 132
Node Package Manager (NPM) 132
npm install command 132
NPM (Node Package Manager) 132
npm start command 132
numeric data, representation 33
numerics 23

O
Object Linking and Embedding. See OLE
object model (Visual COBOL) 23–24
onClick function handler 145
openEntryPointer() method 75, 76
OpenESQL syntax 164–165
openFile() method 75
opening files (indexed files) 52–53
open() method 74
OpenSUSE

Maven installation 11
Oracle JDK 8 3
order of execution, entry points 106
OutputStream argument (handleApIRequest() method

204

P
PaaS (Platform-as-a-Service) 158
package.json file 136
package-lock.json 136
packages

Visual COBOL 26–27
paragraphs, COBOL program structure (proedure div-

sion) 34–35
parameters

COBOl programs 35–38
Personal Edition (Visual COBOL) 3
philosophy, React 137–138
Platform-as-a-Service (PaaS) 158
platforms, deploying microservices 185

Kubernetes 187–198
application changes 190–191

00_COBOL2_AM.indb 21700_COBOL2_AM.indb 217 4/19/21 5:08 PM4/19/21 5:08 PM

218  ﻿

creating the ingress 196–197
defining the application 191–195
deploying the application 195–196
installation 187
running CreditService as Kubernetes applica-

tion 189–190
viewing application logs 197–198

platform necessity 185–187
serverless computing 199–210

building and deploying Lambda function
207–208

changing the application 199–203
configuring API Gateway 208–210
Java Lambda function handler 203–206
testing code 206

platform-specific code. See cross-platform program-
ming

pods, Kubernetes 189
POM (Project Object Model) 10
pom.xml files (Maven) 10
port mappings 178
postCustomer() function 152
PostgreSQL 161
PostgreSQL JDBC driver 166
Postman 93
prerequisites 3
primary keys (ISAM) 30
primary keys (records) 43
private modifiers 24
procedural COBOL 1, 29

applications 30–31
copybooks 38–40
structure of COBOL programs 31

data division 32–34
procedure division 34–38

testing with MFUnit 101–107
running test suites 102–107

procedure division
accessing files 47–48

procedure division, COBOL program structure
34–38

PROCEDURE-NAMES.cpy 74
procedure-pointers, AccountStorageAccess class

(REST Service) 76–77
programs

automated testing 99
downloading test examples 100–101
end-to-end testing 120–126
Interoperation Layer 117–120
MFUnit 101–107
strategies 99–100

running
Hello World 5–6

sample application 41

calling COBOL from Java 61–65
data storage in indexed files 43–53
generating data 59–61
Interest-Calculator program 54–60

programs (COBOL)
structure 31

data division 32–34
procedure division 34–38

Project Explorer 8
Project Object Model (POM) 10
project structure

creating Java projects with Maven 12
promise objects 143
promise.then() function 143
properties

Visual COBOL 24
property-id header 25
props parameter 143
ProxyWithStreamTest (lambdaProxy project) 206
public modifiers 24

R
raise verb 26
React

Add Customer button 146–148
AddCustomerForm dialog 148–151
application components 138–140

CustomerList component 144–146
MainPage component 140–144

dependencies for the credit-service-form 138
development environments 135–136
event handlers 152–153
extending the application 146
philosophy 137–138
posting new user details 152–154
structure of application 136–137

readByFileId() method 83
reading files

accessing indexed files 49–51
reading records, indexed files 52–53
readRecordById() method 83
read statements 22
records

AccountStorageAccess class (REST Service)
adding, updating, and deleting records 77–79
reading and finding records 79–83

COBOL programs 33–34
reading (indexed files) 52–53
writing (indexed files) 52

Red Hat Enterprise Linux
Docker installation 156

re-entrant code 30

00_COBOL2_AM.indb 21800_COBOL2_AM.indb 218 4/19/21 5:08 PM4/19/21 5:08 PM

	 ﻿    219

relational databases 43
remote repositories (Maven) 10
render() function 140, 151
repositories

Docker 178
Maven hierarchy 10

Representational State Transfer (REST) service.
See REST (Representational State Transfer)
service

@RequestMapping annotation 91
REST Assured, automated testing 120–126
REST Assured dependency 121
@RestController annotation 91
REST controller test case 124
RESTful Web Service 88
REST (Representational State Transfer) Service

accessing data
AbstractBusinessAccess class 71–75
AccountController class 89–92
AccoutStorageAccess class 76–83
application components 67–70
data access and transfer classes 71
interoperation layer 70
iterators 83–85
MonthlyInterest class 85–88
Spring Boot 88
StatementController class 95–97
testing endpoints 93–95
WebServiceApplication class 89–90

return-code register 36
running

programs
Hello World 5–6

run-time environments
COBOl dialects 21

run-times
containers 157

run-time, Visual COBOL 93
RunUnit.GetInstance() method 92
@RunWith(SpringRunner.class) annotation 122

S
S3 (Amazon Web Services) 174
scripts

containerizing the CreditService 181–183
secondary keys (ISAM) 30
secondary keys (records) 43
Secrets, Kubernetes 190
sections, COBOL program strucure (procedure divi-

sion) 34–35
serverless computing 199–210

building and deploying Lambda function 207–208

changing the application 199–203
configuring API Gateway 208–210
Java Lambda function handler 203–206
testing code 206

services, Kubernetes entities 189
setConnectionString() method 191
setState() method 143
setter heading 25
setup() method 122
Single-Page Web applications 128–130
SmartLinkage project 42
smart linkage, Visual COBOL compiler 31
sourceformat directive 22
source format fixed 22
source format free 22
source formats

Visual COBOL 21–23
case sensitivity 23
comments 22–23
literals 23

source format variable 22–23
SpringApplication.run() method 89
Spring Boot 88
@SpringBootTest annotation 122
Spring Initializr 88
starting

Eclipse
Linux 8
Windows 8

StatementCalculator, serverless function 200
StatementController class (REST Service) 95–97
statements, COBOL program structure

copy... replacing 38
exit 38
goback 38
stop run 30

static method
writing Hello World as a class 7

static public method 25
statusToString() method 75
stop run statement 30
storage of data

indexed files 43–53
accessing files 45–53

strategies, testing applications 99–100
string literals 23
structure

COBOL programs 31
data division 32–34
procedure division 34–38

React 136–137
structured programming 30
stub method 100
stubs (test double) 100–101

00_COBOL2_AM.indb 21900_COBOL2_AM.indb 219 4/19/21 5:08 PM4/19/21 5:08 PM

220  ﻿

stubs (Test Double) 100–101
subgroups, COBOL group items 33
SUSE

Docker installation 156
SUSE Enterprise

Maven installation 11

T
TDD (test-driven development) 99–100
TestAccountStorage program 109–110
test case setup code

BusinessRules Layer, automated testing 111–112
Test Doubles 101
test-driven development (TDD) 99–100
testing

changing from ISAM to a database 167–170
BusinessSystemTests 167
CreditService tests 172–173
interoperation tests 170–172

endpoints 93–95
serverless computing 206

testing (automated) 99
BusinessRules Layer

account storage tet case code 113–114
interest calculator test case code 114–117
legacy code 117
test case setup code 111–112

downloading test examples 100–101
end-to-end tests 120–126
Interoperation Layer 117–120
MFUnit 101–107
strategies 99–100

test suites, MFUnit 102–107
then() method 143
toggleAddCustomerDlg() function 152
TRANSACTION-RECORD.cpy copybook 44
transfer classes

accessing data with REST Service 71
AbstractBusinessAccess class 71–75
AccountStorageAccess class 76–83

try... catch... finally blocks
Visual COBOL 26

typedef clause 40

U
uber-jar 177
UI (user interface) modernization

Credit Service application 130–135
cross-origin resource sharing 133–135

running the application 132–134
React

Add Customer button 146–148
AddCustomerForm dialog 148–151
application components 138–146
dependencies for the credit-service-form 138
development environments 135–136
event handlers 152–153
extending the application 146
philosophy 137–138
posting new user details 152–154
structure of application 136–137

Single-Page Web applications 128–130
UI choices 127–128

unit tests 99–100
unshift() function 154
updateAccount() method 77
updateCustomer test case 120
user interface (UI) modernization

Credit Service application 130–135
cross-origin resource sharing 133–135
running the application 132–134

React
Add Customer button 146–148
AddCustomerForm dialog 148–151
application components 138–146
dependencies for the credit-service-form 138
development environments 135–136
event handlers 152–153
extending the application 146
philosophy 137–138
posting new user details 152–154
structure of application 136–137

Single-Page Web applications 128–130
UI choices 127–128

V
value-types

Visual COBOL object model 23
version numbers (POM files) 10
viewing

Kubernetes application logs 197–198
VirtualBox 187
Virtual Machines (VMs) 158
Visual COBOL 19

classes 24–25
COBOL dialects 19–20
COBOL source formats 21–23
exceptions 26–27
managed code 20–21
modernizing COBOL applications 30–31
object model 23–24

00_COBOL2_AM.indb 22000_COBOL2_AM.indb 220 4/19/21 5:08 PM4/19/21 5:08 PM

	 ﻿    221

packages 26–27
source formats

case sensitivity 23
comments 22–23
literals 23

Visual COBOL – A Developer’s Guide to Modern CO-
BOL (italic) 20

Visual COBOL—A Developer’s Guide to Modern CO-
BOL (italic) 2–3

Visual COBOL compiler 31
Visual COBOL Development Hub 3
Visual COBOL for Eclipse 3
Visual COBOL Personal Edition 3
Visual Studio Code 135
VMs (Virtual Machines) 158

W
WebserviceAccountTests class 123
WebServiceApplication class (REST Service) 89–90
when() method 124
windows

Build Properties 8
COBOL Explorer 8

Windows
starting Eclipse 8

working-storage (COBOL programs) 30, 32
writing files

accessing indexed files 49–51
writing records, indexed files 52

X
XSS (cross-site scripting) 134

Y
YAML Ain’t Markup Language 192
YAML (Yet Another Markup Language) 192
Yet Another Markup Language (YAML) 192

00_COBOL2_AM.indb 22100_COBOL2_AM.indb 221 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 22200_COBOL2_AM.indb 222 4/19/21 5:08 PM4/19/21 5:08 PM

FREE
DOWNLOAD!

The Future of
COBOL is Here
TUNE YOUR SKILLS AND GAIN EXPERIENCE
WITH THE NEXT GENERATION IN COBOL
DEVELOPMENT—VISUAL COBOL.

Visual COBOL™ Personal Edition (PE) is here. Work within the industry-standard
IDE of your choice. Take full advantage of the new capabilities available to you
within this innovative development environment. Visual COBOL PE integrates
with Microsoft Visual Studio and Eclipse giving you the choice to develop COBOL
applications using the world’s most popular integrated development environments.
This is your opportunity to learn the enterprise language behind 70% of today’s
business transactions.

Visual COBOL Personal Edition has the same features as the commercial
version. These include:
• Procedural and object-oriented COBOL development
• �Build COBOL applications for native code, .NET and the Java Virtual Machine
• Mixed language interoperability with Java and C#
• Code assist tools such as Intellisense and auto-complete
• �Visual Studio designer support for creating WPF, Winforms and ASP.NET

applications

www.microfocus.com/products/visual-cobol/personal-edition

00_COBOL2_AM.indb 22300_COBOL2_AM.indb 223 4/19/21 5:08 PM4/19/21 5:08 PM

00_COBOL2_AM.indb 22400_COBOL2_AM.indb 224 4/19/21 5:08 PM4/19/21 5:08 PM

