

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.vmware.com/company.html
http://www.vmware.com/company.html

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Container
Network
Security

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Container
Network
Security

VMware Special Edition

by Haim Helman,
Manish Chugtu, Jay Vyas,

and Susan Wu

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Container Network Security For Dummies®, VMware Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2021 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

ISBN 978-1-119-81121-3 (pbk); ISBN 978-1-119-81122-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/
go/custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor: Elizabeth Kuball

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Cynthia Tweed

Production Editor:
Mohammed Zafar

Special Help: Pere Monclus,
Stijn Vanveerdeghem, Yves Fauser

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents v

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Foolish Assumptions... 1
Icons Used in This Book.. 2
Beyond the Book... 2

CHAPTER 1:	 Recognizing Attack Vectors in the
Software Supply Chain... 3
Understanding Security Risks Associated with the Rise of
Container Adoption... 4
Attack Vectors in the Development Environment............................. 4

Account credentials... 5
Container images... 5
Application dependencies.. 6
Image registries.. 6
Host-container relationships.. 7
Unsecured orchestrator platforms.. 7

Attack Vectors in Microservices Architectures and Networks......... 8
Inter-process communications.. 8
Databases... 9
Application layer protocols... 9
North–south attacks.. 10

CHAPTER 2:	 Securing the Software Development
Supply Chain... 11
Getting Started with the
NetworkPolicy API... 11
Looking at How Network Policies
Work with Services.. 15
Exploring Other Types of
Network Policies.. 17
Using the Kubernetes End-to-End Tests... 19

CHAPTER 3:	 Hardening the Workload.. 23
Addressing Risky Configurations in Kubernetes Resources.......... 23

Container runtime... 24
Network exposure... 25
Role-based access control.. 26

Container Network Security

vi Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Volumes.. 27
Secrets... 28
Custom resource definitions.. 28
Other Kubernetes APIs that are
risky at runtime.. 29

Enforcing Best Practices and
Policies in Kubernetes.. 29

CHAPTER 4:	 Securing Network Communications........................... 33
Managing and Securing Ingress Access.. 33

Securing Ingress traffic.. 35
Implementing authentication and authorization....................... 37
Configuring other Ingress security features............................... 38

Managing and Securing Traffic between Microservices................. 39
Service-to-service authentication (mTLS).................................... 40
Request authentication (at Ingress)... 43
Authorization.. 44
Advanced use cases... 45
Ensuring observability... 46
Pattern-based intrusion prevention systems (IPS)
and deep packet inspection (DPI).. 47

CHAPTER 5:	 Ten Resources to Help You Get Started
with Container Network Security................................. 51
Analyst Research... 51
Blogs... 52
Books.. 52
Courses and Certifications... 53
Demos and Presentations.. 54
Documentation and Product Pages.. 54
Frameworks... 55
Special Interest Groups.. 56
Videos... 56
Webinars.. 57

Introduction 1

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

The trend of moving networking into software and compute
layers started a decade ago, but containers and the use of
Kubernetes for container orchestration has been accelerat-

ing this trend. Simply put, there are no Kubernetes clusters with-
out container networking, there are no containerized applications
in production without security, and there is no shared infrastruc-
ture without segmentation.

About This Book
Container Network Security For Dummies consists of five chapters
that explore:

»» How to recognize the attack vectors in the software supply
chain (Chapter 1)

»» How to use Kubernetes NetworkPolicy to secure the
software development chain (Chapter 2)

»» How to harden your application workloads (Chapter 3)

»» How to secure network communications (Chapter 4)

»» Helpful resources to learn more about container network
security (Chapter 5)

Each chapter is written to stand on its own, so if you see a topic
that piques your interest feel free to jump ahead to that chapter.
You can read this book in any order that suits you (though we
don’t recommend upside down or backward).

Foolish Assumptions
It has been said that most assumptions have outlived their use-
lessness, but I assume a few things nonetheless!

Mainly, I assume that you’re an application developer, a security
engineer, or a cloud architect. As such, I assume you have at least
some understanding of application development, containers and
orchestration, and network fundamentals.

2 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If any of these assumptions describes you, then this is the book
for you! If none of these assumptions describes you, keep reading
anyway! It’s a great book and after reading it, you’ll know quite a
bit about container network security.

Icons Used in This Book
Throughout this book, I occasionally use special icons to call
attention to important information. Here’s what to expect:

This icon points out important information you should commit to
your nonvolatile memory, your gray matter, or your noggin!

If you seek to attain the seventh level of NERD-vana, perk up!
This icon explains the jargon beneath the jargon.

Tips are appreciated, but never expected, and I sure hope you’ll
appreciate these useful nuggets of information.

These alerts point out the stuff your mother warned you about
(well, probably not — but they do offer practical advice).

Beyond the Book
There’s only so much I can cover in this short book, so if you want
to learn more check out https://vmware.com.

https://vmware.com/

CHAPTER 1 Recognizing Attack Vectors in the Software Supply Chain 3

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Looking at the rise of container adoption
and security risks

»» Identifying attack vectors in the
development environment

»» Mapping attack vectors in microservices
and networks

Recognizing Attack
Vectors in the Software
Supply Chain

The Sonatype 2020 State of the Software Supply Chain Report
declared it’s “open season” on open-source software
projects, as evidenced by a 430 percent increase in next-

generation cyberattacks actively targeting these projects since
2019. At a high-level, the modus operandi for adversaries attack-
ing the software supply chain is to inject malicious code upstream
into open-source projects and then target downstream applica-
tions after the malicious code has made its way through the sup-
ply chain.

In this chapter, I introduced you to the different attack vectors
that adversaries use to compromise development environments,
microservices architectures, and networks.

4 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding Security Risks Associated
with the Rise of Container Adoption

Containerized applications can be very dynamic. Compared
with VM-based applications, containerized applications typi-
cally have a high rate of change. According to industry analysts,
nearly three-quarters of global organizations will be running
three or more containerized applications in their production
environments by 2023. The Cloud Native Computing Founda-
tion (CNCF) also confirmed a similar pattern in its survey which
found the use of containers in production has increased to
92 percent since 2019.

With Kubernetes being the prevalent container orchestration
solution, 32 percent of respondents in the CNCF survey indicated
that security is one of their top three challenges to using contain-
ers. You need to carefully evaluate the risks that may be intro-
duced in your software supply chain through containers and take
appropriate precautions to harden your workloads and secure the
container environment — and the data in them.

Attack Vectors in the Development
Environment

Adversaries often target integrated development environments
(IDEs) and weak credentials used in repositories and registries to
taint popular software development kits (SDKs) and code librar-
ies, or to obtain hard-coded secrets (that is, passwords).

In the following sections, I describe several common attack vec-
tors that adversaries frequently leverage to compromise develop-
ment systems.

SecOps practitioners often map threats using the MITRE Adver-
sarial Tactics, Techniques & Common Knowledge (ATT&CK)
framework, which provides a thorough analysis of the tech-
niques a threat actor may employ, as well as potential mitiga-
tions, during the last five stages of the seven-stage Cyber Attack
Lifecycle (Recon, Weaponize, Deliver, Exploit, Control, Execute,
Maintain) — in other words, everything but Recon and Weaponize.

CHAPTER 1 Recognizing Attack Vectors in the Software Supply Chain 5

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Although a separate framework for container security does not
exist today, the Linux Matrix within the MITRE ATT&CK Matrix
for Enterprise discusses attack vectors for the Linux platform and
is presently the most directly applicable model for containers.

Account credentials
Adversaries routinely scan public repositories in search of priv-
ileged account credentials that can be compromised, as well as
sensitive log information and weak configuration settings that
can be exploited.

Backdooring is a popular method used to infiltrate accounts. Adver-
saries insert malicious code into seemingly innocuous packages
that create a backdoor for attackers to use after the host package
is installed in an application.

Successful phishing attacks also can result in account hijacking.
A compromised account can be used to introduce and execute
malicious code in the repository (for example, to exfiltrate sensi-
tive data or mine cryptocurrency on a large number of production
containers).

Finally, although logs can be an essential debugging tool, they can
also be a rich source of sensitive information and configuration
settings, which adversaries can use to compromise downstream
applications. For example, privileged access logs may expose
account credentials to adversaries.

These are not hypothetical risks: developer account takeovers,
including backdoor admin accounts and backdoor Secure Shell
(SSH) accounts, are happening more and more frequently.

Container images
Container images from an unsanctioned repository can introduce
vulnerabilities into applications. One common way to exploit a
microservices architecture is to use an official and popular vanilla
(that is, not customized) base image, like Ubuntu or Alpine,
which is typically not designed to deliver a payload or run mali-
cious code. The payload is delivered and initiated by the entry-
point command, which in turn downloads malicious components
during runtime.

6 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CSO Online reported that, of the images hosted on the Docker Hub
repository, more than half have at least one critical vulnerabil-
ity. The popularity of public registries hosting premade software
components and images has led to attackers publishing code on
these package repositories, making it even easier to exploit the
software supply chain.

Maintaining image hygiene is critical to prevent container bloat
and to ensure that outdated images don’t become an attack vector
that can be used to introduce vulnerabilities.

Application dependencies
Developers build distributed applications using various com-
ponents, including libraries, frameworks, and other software
modules. These application dependencies (and nested depen-
dencies) can themselves pose a security risk. For example,
dependencies can be backdoored and vulnerabilities or outdated
components can be nested deep to hide their existence.

Modern applications often make use of 100 or more software
components, of which as much as 90 percent can be open source.
Research from the University of Darmstadt, published in August
2019, revealed that nearly 40 percent of all npm (originally, an
abbreviation for Node Package Manager) packages rely on code
with known vulnerabilities.

Outdated components with known vulnerabilities should not be
used in modern application development. It’s important to main-
tain good security hygiene by removing outdated software ver-
sions that may have potentially vulnerable components that can
be exploited by adversaries.

Image registries
Developers download free open-source component releases from
public open-source repositories in order to build their applica-
tions. The use of public image repositories (for example, Docker
Hub, Maven Central, and npm) introduces security risks because
defective and known vulnerable components can make their way
through software supply chains into production code.

CHAPTER 1 Recognizing Attack Vectors in the Software Supply Chain 7

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Host-container relationships
In self-managed scenarios, direct access to the host operating
system (OS) of the master node is possible via port exposure or
an exploitable condition. A container or pod is allowed to esca-
late privileges, resulting in host access. Containers can’t provide
100 percent isolation for your applications in the same way that
running your applications on separate hosts or virtual machines
(VMs) can. Containers can also be exposed to kernel privilege
escalation attacks.

Unsecured orchestrator platforms
Excessive developer privileges in orchestrator platforms, such
as Kubernetes, can pose a significant risk. The Kubernetes com-
munity curates a collection of failure stories to share best prac-
tices on operations and security. One of these stories details the
attack vectors in the Kubernetes platform. A video software player
company found a cryptominer running as a binary on the root
directory of one of their host machines (not from a container).
This was due to an exposed load balancer using a specific Kuber-
netes cluster configuration that allowed arbitrary code to break
out of the container and run on the host instance. The attacker
was able to execute this exploit by masquerading the cryptominer
as a legitimate filename to avoid detection. The cryptominer then
exploited a monitoring process that was running in the privileged
mode to move laterally through the Kubernetes deployment.
Fortunately, in this case, the damage was limited to consuming
100 percent of the CPU core on their dev and test instances, and
there were no successful exploits into their production clusters.

Adversaries can exploit the Kubernetes platform in many ways,
including via the following methods:

»» An exposed application programming interface (API) server
that allows control of Kubernetes clusters.

»» Unencrypted secrets harvested from the etcd key-value
store, which contains encryption keys, database credentials,
API keys, and other sensitive key materials or authentication
data for container services.

»» An exposed kubelet, which could allow for worker node
control.

8 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A kubelet is an agent that runs on each node in a Kubernetes
cluster and ensures that containers are running in a pod.

»» An unpatched authentication bypass vulnerability in the
kube-proxy network proxy, or a kube-proxy that has
anonymous access enabled.

»» An unpatched vulnerability in a container runtime that
enables container breakout and access to the host system.

Attack Vectors in Microservices
Architectures and Networks

Unlike legacy monolithic and n-tier applications, modern cloud-
native applications are composed of hundreds (sometimes thou-
sands) of microservices that are often deployed as containers
across numerous on-premises data centers and cloud environ-
ments. Every microservice that’s part of an application can be a
unique network endpoint that exposes an attack surface.

An inbound (north–south) request from an end-user application
can result in hundreds of east–west transactions between con-
tainers in a microservices architecture. This east–west traffic —
including inter-process communications, databases, and
application layer protocols — is generally not mediated by API
gateways or other security controls, so attackers take advantage of
relatively unrestricted lateral movement within the environment.

Inter-process communications
Message brokers such as Apache Kafka, Rabbit MQ, and Redis
are used as the back-end glue of a microservices architecture.
However, after access to the queue is permitted, no further autho-
rization checks are performed.

Additional messaging-level controls, like message signing, may
not be necessary in the development environment, but they
should be strongly considered in production environments to
enhance security.

CHAPTER 1 Recognizing Attack Vectors in the Software Supply Chain 9

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Databases
Monolithic applications tend to make use of a single, centralized
database. In a microservices architecture, there’s a tendency to
use different database tables for each microservice to increase
agility and promote independence. However, there are many
attack techniques defined by MITRE that an adversary can use to
exploit a microservices architecture, such as using a compromised
container to perform malicious data queries and data exfiltration.

Unlike traditional application workloads, databases used in a
microservices architecture can be stored practically anywhere and
are, thus, challenging to protect.

Finally, whereas traditional relational databases have centralized
controls (like private tables, private schemas, and private data-
bases), in a microservices architecture there are no traceability
tools (such as database audit logs and database management
tools). So, an attacker can gain unauthorized access to sensitive
data in a microservices architecture using a variety of techniques
that take advantage of this relatively open environment.

Application layer protocols
Any application, whether a traditional n-tier or microservices
application, can be susceptible to application layer attack tech-
niques, such as SQL injection and cross-site scripting (XSS).
Additionally, many containerized applications can interact with
monolithic applications, thereby exposing a larger attack surface
between the applications.

Attackers may also communicate with their command-and-
control (C2) infrastructure using application layer protocols that
are normally associated with web traffic. In this way, they can
avoid detection and network filtering by blending their C2 traf-
fic in with legitimate traffic. Commands from the remote C2
infrastructure (and often, the results of those commands) can be
embedded in legitimate traffic between the client and server using
common web protocols, like Hypertext Transfer Protocol (HTTP)
and Hypertext Transfer Protocol Secure (HTTPS). An attacker uses
these protocols to communicate with the compromised systems
within a targeted network, while also mimicking normal expected
traffic to avoid detection.

10 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

North–south attacks
Attackers may also exploit weaknesses in public-facing web
applications or databases. If the application is hosted on cloud-
based infrastructure, an application exploit can compromise the
underlying instance and take advantage of weak identity and
access control policies in a north–south attack.

The threat landscape for microservices architectures has shifted.
Organized criminal organizations are increasingly attacking
cloud-native application environments and investing heavily
in attack infrastructure to find exposed and vulnerable hosts in
order to achieve criminal objectives for financial gain.

CHAPTER 2 Securing the Software Development Supply Chain 11

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Creating your first network policy

»» Understanding the role of Container
Network Interface (CNI) providers

»» Taking network policies to the next level

»» Verifying your network policies work
with end-to-end testing

Securing the Software
Development Supply
Chain

The Kubernetes NetworkPolicy application programming
interface (API) was created so that developers could write
policies that define internal connectivity and security

requirements for their applications. In this chapter, I dive right into
a few examples to demonstrate how to use the NetworkPolicy API.

Getting Started with the
NetworkPolicy API

Network policies created with the NetworkPolicy API generally
include the ability to:

»» Block (and later, allow) incoming connections from pods,
namespaces, or Classless Inter-Domain Routing (CIDR) blocks

»» Block (and later, allow) outgoing connections to pods or
namespaces

»» Block (and later, allow) communications to specific ports

12 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

There are three steps to creating network policies:

1.	 Create a default policy.

First, select a pod you’re applying a policy to. When you apply
a policy to a pod, you’re effectively blocking its ability to
receive traffic from the outside world (if you create an
“ingress” policy) or blocking its ability to send traffic to the
outside world (if you create an “egress” policy).

Next, open up firewall rules. After you apply a policy to a pod,
you need to add ingress and/or egress rules to that policy.

Let’s create a network policy and apply it to a pod that has the
role: my-app-that-needs-to-be-more-secure label:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: my-first-policy

 namespace: default

spec:

 podSelector:

 matchLabels:

 role: my-app-that-needs-to-be-secure

Write this policy file out to policy.yaml on your local
machine, and then run kubectl create -f policy.yaml
to create the policy. Your pods will now be inaccessible from
the outside world.

2.	 Expand your policy to allow traffic from a namespace.

A network policy that totally isolates a pod from ingress
traffic is not very practical for a web server. A web server
should, of course, accept traffic from web clients. To allow
this traffic, you need to add an ingress rule that defaults to
Ingress, by including the policyTypes: field in your policy.
You can re-create your original policy by rewriting the file and
running kubectl apply -f policy.yaml:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: my-first-policy

 namespace: default

CHAPTER 2 Securing the Software Development Supply Chain 13

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

spec:

 podSelector:

 matchLabels:

 role: my-app-that-needs-to-be-secure

 policyTypes:

 - Ingress

 ingress:

 - from:

 - namespaceSelector:

 matchLabels:

 podgroup: web-client

At this point, you now have a network policy that will block
traffic to Pods matching the Pod selector, with the exception
of namespaces that are labeled podgroup: web-client.

3.	 Verify that your policy works.

To test your policy, you can create a nginx-daemonset (these
are ideal for network policy testing because you’ll see the
same firewall rules on all nodes). Save your daemonset file as
ds.yaml, and then run kubectl create -f ds.yaml. In a
few moments, you’ll have a nginx daemonset running on all
nodes of your cluster:

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: nginx-ds

spec:

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 matchLabels:

 role: my-app-that-needs-to-be-secure

 app: web

 spec:

 containers:

 - name: nginx

 image: quay.io/bitnami/nginx

14 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Now, you can run a few experiments on your own because you
have a web server running on port 443 of the pod’s IP address for
this nginx pod. For example, you can check whether your cluster
has network policies enabled. Create a busybox pod, which you
can use to run your experiments using the following deployment:

apiVersion: v1
kind: Pod
metadata:
 name: ubuntu
 namespace: default
spec:
 containers:
 - image: quay.io/baselibrary/ubuntu
 command:
 - sleep
 - "36000"
 name: ubuntu
 restartPolicy: Always

Next, create a busybox pod in the default namespace. Now, create
a shell in your busybox pod (you can do this by running kubectl
get pods and then running kubectl exec -t -i <POD_NAME> --
/bin/sh). Then, inside your busybox pod, you can try to curl the
IP off your nginx pod, which can be obtained by running kubectl
get pods -o wide. For example, you might run kubectl exec -t
-i <POD_NAME> -- curl 10.1.2.3:8080, where 10.1.2.3 is the IP
address for your nginx pods.

In any case, if this command hangs, then it means your policies
are working.

What if you relabel that pod to contain podgroup: web-client in
its pod specification? If you set up the preceding example cor-
rectly, then opening a new shell into one of your busybox pods
and rerunning the preceding commands should result in traffic
being allowed to the nginx pod.

Now, create a Kubernetes service that load balances traffic to the
nginx daemonset. Can you curl traffic to the daemonset through
the service IP address from this busybox pod?

CHAPTER 2 Securing the Software Development Supply Chain 15

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

As you can see from these examples, network policies can be pow-
erful security tools for your applications. They allow you to place
firewalls around your application — without modifying your
application — because, in most cases, they’re entirely enabled by
your container networking plugin.

Looking at How Network Policies
Work with Services

One of the experiments you (hopefully) ran in the previous
section involved trying to access traffic from a protected pod
from inside, and outside, of a namespace. In that case, traffic was
blocked unless your busybox pod had the right labels. So, how is
Kubernetes smart enough to block pod traffic even through a load
balancer?

The answer is the Container Network Interface (CNI). Network
policies are applied by a CNI provider, which means that regard-
less of how you accessed a pod — for example, whether you’re
using a translated IP address (using network address translation,
or NAT) to that pod through a load balancer — your CNI provider
will still be able to block traffic, because your CNI is acting directly
on the machine that your pod is running on.

Unless you’re running a cluster with a CNI provider that supports
the NetworkPolicy API (such as Antrea, Calico, or Cillium), the
policies you create may not actually be applied and your contain-
ers will be wide open to traffic from anywhere.

Depending on your CNI provider, network policies are imple-
mented using a different set of technologies. For example:

»» If you use Calico, then your policies are written as iptables
rules. This is accomplished by the calico/node container,
which continuously writes new iptables rules when it sees
changes to labels on pods, namespaces, or network policies.

16 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» If you use Antrea, the exact same thing occurs except that
instead of modifying iptables rules, the antrea-agent (which
is the architectural equivalent of the calico/node) will
continually update openvswitch (OVS) rules.

You can dig into your Antrea containers and see exactly how poli-
cies are implemented. Because you ran nginx in a daemonset in
the previous examples, any node on your cluster will exhibit the
same OVS rules for blocking traffic to an nginx pod. Specifically,
you’ll be able to see the conjunction rule on table 90 in the fol-
lowing example:

$> kubectl -n kube-system exec -it antrea-agent-
<POD_ID> -- ovs-ofctl dump-flows br-int | grep
table=90

Defaulting container name to antrea-agent.

Use 'kubectl describe pod/antrea-agent-<Pod_ID> -n
kube-system' to see all of the containers in this
pod.

 cookie=0x2000000000000, duration=344936.777s,
table=90, n_packets=0, n_bytes=0, priority=210,ct_
state=-new+est,ip actions=resubmit(,105)

 cookie=0x2000000000000, duration=344936.776s,
table=90, n_packets=83160, n_bytes=6153840,
priority=210,ip,nw_src=100.96.26.1
actions=resubmit(,105)

 ### This line shows that you have some pods which
are being allowed, via the ovs flow register, into
the cluster....

 cookie=0x2050000000000, duration=22.296s, table=90,
n_packets=0, n_bytes=0, priority=200,ip,reg1=0x18
actions=conjunction(1,2/2)

CHAPTER 2 Securing the Software Development Supply Chain 17

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 cookie=0x2050000000000, duration=22.300s,
table=90, n_packets=0, n_bytes=0, priority=190,
conj_id=1,ip actions=load:0x1->NXM_NX_REG6[],
resubmit(,105)

 cookie=0x2000000000000, duration=344936.782s,
table=90, n_packets=149662, n_bytes=11075281,
priority=0 actions=resubmit(,100)

In OVS (the technology that powers Antrea), a series of tables is
used to define routing rules, and table 90 is where the routing
ingress rules occur. So, you’ll see changes occurring at the OVS
level in this table as you create or destroy network policies in an
Antrea-powered cluster.

If you use Calico, you can do similar experiments to see the under-
lying network policy implementation by comparing the output of
iptables-save before and after you create a policy on a pod.

Exploring Other Types of
Network Policies

The Kubernetes.io documentation has several other examples of
network policies that you can adapt and use as templates for your
policies. The following example shows a complete policy that ties
together ingress, egress, and multiple matching predicates for a
policy selector:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: my-real-netpol
 namespace: default
spec:
 podSelector:
 matchLabels:
 role: db
 policyTypes:
 - Ingress
 - Egress

18 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 Project: trusted-ns
 - podSelector:
 matchLabels:
 role: trusted-pod
 ports:
 - protocol: TCP
 port: 6379
 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 5978

This policy has an ipblock, namespacesSelector, and pod
Selector. This means that the only traffic that would be allowed
into it must be from the trusted-ns namespace and also from
the trusted-pod pod. Furthermore, incoming traffic must be in
the 172.17 subnet. So, pods that are not in your cluster’s 172.17
subnet would be rejected. Finally, the only traffic that would be
allowed into this pod must be on Transmission Control Protocol
(TCP) port 6379.

But what if you want to allow communication across a range of
ports? Several improvements in Kubernetes 1.21 provide greater
flexibility in network policies:

»» Port ranges: In future Kubernetes releases, you’ll be able
to define port ranges, instead of just using individual ports.
This will make it easier, for example, to create a network
policy for a File Transfer Protocol (FTP) server or a virtual
machine (VM) running as a Kubernetes pod. It will also allow

CHAPTER 2 Securing the Software Development Supply Chain 19

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

administrators to easily make default policies that only allow
traffic in a specified port range.

»» Namespace name policies: This is a new feature in the
Kubernetes API that will add a default namespace label to
any namespace in a cluster. This means you can easily build
namespace label selectors for a policy, even if you don’t
know about the existing labels on that namespace. This
problem is common in clusters where users don’t have
permission to read namespace labels but still want to be
able to write network policies.

Using the Kubernetes End-to-End Tests
The Kubernetes community has released a powerful set of Net-
workPolicy validation tests that use truth tables to tell you exactly
how your cluster responds to a specific policy, with several exam-
ple pods that probe one another.

To run these tests, you need to run the Kubernetes e2e.test library
or use a tool (such as Sonobuoy) to filter out the Netpol testing
suite. You can use these tests to verify that your cluster has a per-
fectly functioning, high-performance network policy provider,
allowing you to easily switch between networking technologies
over time without losing your security model.

Table 2-1 shows a sample output of the Kubernetes NetPol test
suites for a cluster that is wide open (that is, a cluster where
pod a in namespace x can talk to pod a in namespace y, and
so on) for all pods in the namespaces being tested.

TABLE 2-1	 Pod Connectivity before Policies on
namespace x Are Created

x/a x/b x/c y/z

x/a

x/b

x/c

y/a

20 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

After applying a network policy (for example, one that blocks all
traffic going into namespace x), the truth table output of the e2e.
test program would look like Table 2-2.

Different CNIs do different things for loopback policies, so the
ability of x/a to connect to x/a when a policy blocks all ingress
to namespace x will be different. The Kubernetes end-to-end
tests don’t “fail” if the expected connectivity from a pod to itself
is different from what is defined by the NetworkPolicy API, but
they do print out the result of this connection. In other words, the
NetworkPolicy API behavior is not defined for loopback connec-
tions and varies across different CNIs.

To run the end-to-end testing NetworkPolicy validation suite
from the source, follow these steps:

1.	 Clone Kubernetes from https://github.com/kubernetes/
kubernetes.

2.	 Ensure you have Golang 1.16+ and Docker installed.

You’ll also need a C++ complier like g++ (GCC).

3.	 Change directory (cd) to the Kubernetes directory and
run make WHAT=test/e2e/e2e.test.

4.	 Export the KUBERNETES_SERVICE_HOST=https://<your
cluster apiserver IP> and KUBECONFIG=<path to
your kubeconfig>.

5.	 Run ./_output/local/bin/linux/amd64/e2e.test
--provider=local --dump-logs-on-failure=false
--ginkgo.focus='Netpol'.

TABLE 2-2	 Pod Connectivity after Policies on
namespace x Are Created

x/a x/b x/c y/z

x/a x x X .

x/b x x X .

x/c x x X .

y/a x x X .

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes

CHAPTER 2 Securing the Software Development Supply Chain 21

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If you’re running macOS, your final _output/local/bin/ com-
mand might instead look like ./_output/local/bin/darwin/
amd64/e2e.test because the end-to-end testing binary will have
been built for macOS rather than Linux.

This testing suite consists of about 30 tests and takes anywhere
from 5 to 20 minutes, depending on how fast your network is and
how quickly your cluster can create and destroy pods. If you see
failures, make sure they’re relevant. For example, many clusters
don’t support Stream Control Transmission Protocol (SCTP) or
Internet Protocol Version 6 (IPv6), so any network policy tests
involving SCTP or IPv6 might be expected failures. In conven-
tional scenarios, you can skip these tests by using the following
commands:

./_output/local/bin/linux/amd64/e2e.test --provider=
local --kubeconfig=/home/ubuntu/.kube/config --dump-
logs-on-failure=false --ginkgo.focus='Netpol'
--ginkgo.skip="SCTP|UDP|6"

Running the Kubernetes end-to-end tests can tell you a lot about
your cluster, and it isn’t just a tool for network policies. If you
want to integrate this tool more deeply into your daily workflow,
you may want to use a tool, such as Sonobuoy (go to https://
github.com/vmware-tanzu/sonobuoy), which runs the entire
end-to-end test suite inside of a pod and offers a convenient
command line tool, which you don’t have to compile.

https://github.com/vmware-tanzu/sonobuoy
https://github.com/vmware-tanzu/sonobuoy

CHAPTER 3 Hardening the Workload 23

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Securing Kubernetes resources

»» Implementing best practices and
addressing PodSecurityPolicy limitations

Hardening the Workload

Kubernetes does much more than scheduling containers to
run on a cluster of servers. It provides a very powerful
application programming interface (API) that allows devel-

opers to specify the resources needed to run their application,
including compute, network, and storage, as well the privileges
the application will have in the server it’s running on and in the
cluster as a whole.

Before letting your developers unleash the power of the Kuber-
netes API, you should understand the potential risks that may be
introduced into your environment with each configuration attrib-
ute and the Kubernetes mechanisms that help administrators
control risk by setting security guardrails for their developers —
both of which I cover in this chapter.

Addressing Risky Configurations in
Kubernetes Resources

Many out-of-the-box Kubernetes resources and configurations
(and potential misconfigurations) can introduce risk into an
application environment. In the following sections, I take a closer
look at these resources and configurations.

24 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Container runtime
A container runtime is the software that manages and configures
the components required to run containers. It makes it easier to
securely execute and efficiently deploy containers. A container
isn’t a first-class object in the Linux kernel. Instead, it’s a combi-
nation of multiple settings of kernel namespaces, cgroups (which
define how much CPU and memory can be used), and Linux
Security Modules (LSMs, such as selinux).

Open Container Initiative (OCI) runtimes are low-level run-
times in charge of configuring the kernel resources for running
a container. RunC is by far the most commonly used. Instead of
using the native constructs for isolating containers, some OCI
runtimes use sandboxing (for example, gVisor) or virtualization
(for example, Kata and Firecracker) to create more strict separa-
tion between the container and its host.

Another type of runtime implements the Container Runtime
Interface (CRI). These high-level runtimes provide orchestrators,
such as Kubernetes, a uniform way to manage the container life
cycle and monitor running containers. The most popular examples
of CRI implementations are containerd and CRI-O (Container
Runtime Interface plus OCI).

Containers, like virtual machines (VMs), provide a consistent
runtime environment for processes and isolate processes from
each other and from the underlying operating system (OS). How-
ever, unlike VMs, which run a separate OS, containers generally
share the host’s OS and rely on kernel namespaces and resource
groups (that is, Linux cgroups) for isolation and resource man-
agement. Although this “soft” isolation is configurable, there
isn’t an inherent property that guarantees any kind of isolation.
Administrators must be aware of the level of privilege each con-
tainer has in the server it’s running on and the resulting risk of
an escape from a compromised container to its hosting server and
the rest of the cluster.

Let’s take a closer look at some common pod configurations and
risks associated with them:

»» Privileged containers: Although they may run in separate
namespaces, these containers have all the capabilities of a
root user and full access to the host’s kernel and devices. In

CHAPTER 3 Hardening the Workload 25

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

terms of security, they offer no isolation and should be
treated as privileged host processes.

»» Run as user: By default, processes in containers will run as
the root user (user id 0), which is also the root user in the
host. Although the namespace and cgroup isolations will still
apply for those processes, the risk of container escape by
leveraging some vulnerability is much higher for processes
running as root. Running a container as root, while very easy
to do, is almost always a misconfiguration.

»» Capabilities: When a container is privileged or running as
root, it has all the capabilities provided by the Linux kernel.
In some cases, the container only needs a specific set of
capabilities, such as access to the networking subsystem. It’s
always better to run the container as a non-root user and to
specify the kernel capabilities it requires, if any.

»» Host namespace: In general, each container should run
in separate network, process ID (PID), and inter-process
communication (IPC) namespaces. However, containers can
be configured to share one or more of these namespaces
with their host. Although useful at times, such configuration
increases the chance of container escape and lateral move-
ment. For example, in Kubernetes, containers running in the
host’s network namespace cannot be isolated using network
policies.

»» Lack of resource quotas: By default, there is no limit to the
amount of CPU or memory that processes in a container can
use. Without explicitly setting those limits, a compromised (or
just misbehaving) container can easily disrupt the stability of
the host it’s running in and (in some cases) the entire cluster,
by consuming all the host’s resources, causing processes
running in other containers and directly on the host to be
starved or killed.

Network exposure
In Kubernetes, the service object determines how one or more
containers will be exposed in the network. Each service has a:

»» Selector: Identifies the pods (which encapsulate one or
more containers) that will be exposed.

26 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Type: Determines whether the exposure is internal to the
cluster (ClusterIP type), via a port in the host (NodePort type), or
via a load balancer (LoadBalancer type). Although the ClusterIP
service is always internal, NodePort and LoadBalancer can
be internal or external and can be protected via firewall
(on-premises) or security group (cloud) rules.

Simply by changing the type of a service resource, a developer can
significantly increase the security risk associated with an appli-
cation by exposing it, and all its vulnerabilities, to the Internet.

Network policies are another Kubernetes resource that can be used
to control how pods are exposed over the network. By default,
pods in Kubernetes allow all inbound and outbound communica-
tion. NetworkPolicy objects tell the Container Network Interface
(CNI) which connections should be allowed. A tight network pol-
icy will reduce both the probability of attack (by limiting inbound
connections) and its impact (by limiting outbound connections).

Role-based access control
Because Kubernetes offers a powerful API that can provision
compute, network, and storage resources, it requires a way to
control who can call which API. For authorization, Kubernetes
uses role-based access control (RBAC). A Role resource defines
a set of Kubernetes resource kinds and a set of operations that
are permitted on resources of any of those kinds. A RoleBinding
resource associates a role with a subject. A subject could be a user,
a group, or a service account. Whereas users and groups identify
people, service accounts identify an application. By default, each
namespace in Kubernetes has a service account and each pod in
that namespace has a token mounted, which it can use to authen-
ticate itself as part of that service account.

By default, service accounts aren’t bound to a role, so there is no
inherent risk in providing the token to each pod. However, as soon
as the first application is deployed that requires some access to
the cluster’s resources, great care has to be taken to enforce the
least privilege principle by providing only the necessary privileges
to each application. This is accomplished in the following ways:

»» By enumerating the specific resource kinds and opera-
tions allowed by each role instead of using a wildcard (*):
It’s unlikely that an application actually needs to access every
kind of resource or perform every kind of operation.

CHAPTER 3 Hardening the Workload 27

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» By only binding explicitly defined service accounts to
roles: Binding the default service account may lead to new
pods in the namespace getting unintended privileges.

»» By using Roles and RoleBindings instead of ClusterRoles
and ClusterRoleBindings whenever possible: The “Cluster”
versions of these resources are not scoped to a specific
namespace and are, therefore, much more powerful. They
should be used sparingly and audited frequently.

Volumes
By default, containers can only access their local filesystem,
which is ephemeral. This behavior isolates the application run-
ning in the container by preventing it from accessing data it isn’t
supposed to or modifying files that are used by other applications.

However, in some cases an application needs to access files that
are not part of its image or its local filesystem. This could be files
from the host’s filesystem or files provided by the orchestrator
(such as Kubernetes secrets or configuration maps).

Containers support this requirement by allowing volumes to be
mounted to the running container. Volumes could be mounted as
read-only or as writable.

When mounting read-only volumes, you need to ensure that
they don’t contain any sensitive data beyond what’s needed by
the application. For example, a developer may prefer to mount a
top-level directory from the host, such as /var or /etc, in order
to make sure that an application has all the information it needs.
However, these directories contain many files, and it’s nearly
impossible to verify that none of them includes credentials that
could be used to compromise the host or even the cluster. A secure
volume mount should include a relatively small number of files
required for a specific use.

Mounting volumes as writable should be done with even greater
care because the container and any application running in it can
create risk by modifying files that will be used by the host or
other container. By modifying executable files or configuration
files, malware could be injected or application behavior could be
altered to serve an attacker. Therefore, any data in a volume that
is mounted as writable to a container should not be trusted.

28 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Secrets
Often, applications running in containers require credentials in
order to authenticate themselves when accessing other services.
These credentials can’t be stored securely in the container image
or the workload configuration manifest, where access is hard to
monitor and control. Instead, they should be provided to the con-
tainer only when it runs. In Kubernetes, the Secret resource is
used to store such credentials. Secrets can be exposed to a con-
tainer as files in a mounted volume or as environment variables.

The most common examples of secrets are the service account
tokens, which are used by applications in containers when access-
ing the Kubernetes API server.

Because secrets hold sensitive information, special care must be
taken to monitor who can access a secret, either by mounting the
secret in a new pod, entering an existing container that uses that
secret, or directly via the Secrets API provided by the Kubernetes
API server.

Custom resource definitions
The Kubernetes API is based on the concept of a resource. An API
call declares the desired state of a resource, and a controller in
the Kubernetes control plane performs the necessary actions to
get to that state. The way to extend the Kubernetes APIs is to
define custom resources beyond the built-in ones (such as pods,
deployments, and services). An Operator is a common pattern for
a user-defined application, which acts as a controller handling a
specific set of custom resources.

Although the security implications of the different attributes
of built-in resources can be researched and understood to help
you create a policy that governs the configuration of built-in
resources, this is not the case for custom resources.

Minimizing the number of custom resource definitions (CRDs)
and limiting the privileges of the controller handling each CRD
is necessary, to avoid introducing new attack vectors to a cluster
that may result from misconfiguring or manipulating the config-
uration of these resources.

CHAPTER 3 Hardening the Workload 29

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Other Kubernetes APIs that are
risky at runtime
Most of the APIs provided by Kubernetes have to do with declar-
ing the desired state of resources. However, a couple of APIs affect
pods in runtime and, therefore, introduce another kind of secu-
rity concern. The exec and port-forward APIs are very useful for
debugging purposes, but in production environments they could
be used by an attacker to compromise an application, either from
within its container or through its network interfaces:

»» Exec API: This API, most commonly used via the kubectl
exec and kubectl cp commands, replaces Secure Shell
(ssh) as the way to remotely run commands in a running
container inside Kubernetes. Such commands can be used
to read secrets that are exposed to the pod or to attempt
lateral movement inside the cluster (or to other servers that
are accessible from the cluster). However, unlike using ssh to
connect directly to the container, the privilege to perform
exec can be eliminated or limited via RBAC, and these calls
are logged in the cluster’s audit log.

»» Port-forward API: Port forwarding allows redirection of
inbound connections from a pod to a local host and vice
versa. It bypasses the service resource definition and any
network policies that apply for that pod. Like exec, port-
forwarding is meant to help when developing, testing, and
debugging applications, but it’s a dangerous tool in the
hands of an attacker because it can intercept or initiate
network requests to the target pod, even when that pod
doesn’t expose its network interface outside the cluster.

Enforcing Best Practices and
Policies in Kubernetes

The first major effort to identify best practices for securely deploy-
ing container runtimes and Kubernetes clusters, and hardening
applications running in those clusters, was done by the Center for
Internet Security (CIS). The CIS Kubernetes Benchmark and CIS
Docker (Containers) Benchmark are the foundation for many of
the controls required by compliance standards and provided by

30 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

open-source and commercial security tools. Additional resources
are available from the Kubernetes community through the Cloud-
Native Computing Foundation (CNCF) and from the commercial
providers of Kubernetes, such as the major public cloud providers.

PodSecurityPolicy is a kind of resource offered by Kubernetes to
enforce polices and best practices for new pods in a cluster. Most
rules in these policies have to do with the pod’s runtime attri-
butes such as privileged, sharing the host’s namespaces and
additional Linux capabilities. Other rules address the volumes
mounted to the pod.

PodSecurityPolicy can also be used to define more secure defaults
for new pods, such as preventing privilege escalation or turning
off some default capabilities. When applying these kinds of rules,
the PodSecurityPolicy doesn’t just validate, but actually mutates,
the pod’s configuration.

Although the PodSecurityPolicy is a powerful tool that’s offered
natively in Kubernetes, it does have some shortcomings that limit
its adoption:

»» It only applies to pods. It doesn’t cover other kinds of
resources such as services, nodes, or roles. Also, if a
deployment is configured to create pods that will fail the
policy check, the deployment resource will be applied
successfully, but it won’t be able to create any pods.

»» Scope is hard to define. The way to define which policies
apply to a pod is by using RBAC. However, these configura-
tions can be complicated to create, maintain, and debug in
clusters where many users run many applications in many
namespaces.

»» Pod rejection events may be hard to find and under-
stand. There is no easy way to monitor all the events of pod
rejection, and when such an event is found, it may be hard to
tell which rule in which policy is responsible for the rejection.

»» There is no “audit-only” mode. There is no way to test
which pod would fail a policy check before actually applying
that policy and re-creating the pods, which may disrupt the
operation of the application running in the cluster.

»» It’s not extensible. There is no way to add new rules other
than updating Kubernetes itself.

CHAPTER 3 Hardening the Workload 31

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In order to overcome the limitations of the PodSecurityPolicy
tool, Kubernetes supports custom admission control via a vali-
dating webhook. In this approach, one or more servers are defined
(known as admission controllers), which will either approve or
reject Kubernetes API calls. The Kubernetes API server is config-
ured to send a webhook to each admission controller on some, or
all, incoming API calls. If all webhooks return as approved, the
API call will be executed; otherwise, it will be rejected.

A validating webhook admission controller configured to enforce
workload security best practices, combined with a tight RBAC
policy are the best ways to minimize the security and operational
risks introduced to a cluster via the Kubernetes API.

CHAPTER 4 Securing Network Communications 33

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Making Ingress access secure

»» Securing east–west communications in a
microservices architecture

Securing Network
Communications

Modern cloud-native applications are dynamic, adaptive,
and highly distributed, with hundreds of microservices
deployed as containers servicing the requirements of

rapid feature releases, high resilience, and on-demand scalability.
These containers are deployed on multiple nodes in a single
Kubernetes cluster, and quite often across multiple clusters and
clouds.

In this chapter, we explain how to manage and secure access to
and from your application (north–south traffic), as well as com-
munications between the microservices of the application itself
(east–west traffic).

Managing and Securing Ingress Access
External access to an application running on a Kubernetes cluster
is done by exposing the service using the following options:

»» Service.Type = NodePort: When you declare a service
with the NodePort option, it exposes the application on a

34 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

port across each of the nodes in the cluster. The application
can then be accessed from outside the cluster using
<NodeIP>:<NodePort>.

»» Service.Type = LoadBalancer: When you declare a
service with the LoadBalancer option, it creates an external
load balancer that points to a Kubernetes service in the
cluster. Most cloud providers support this option to provi-
sion the cloud load balancer and route external traffic to the
service.

»» Ingress API: The Ingress application programming interface
(API) is a high-level abstraction that allows you to manage
external access to the services inside a Kubernetes cluster.
Ingress is not a service type; it’s another Kubernetes
resource that acts as a reverse-proxy (typically, Layer 7) and
manages traffic routing to different services within a cluster.
Even though, Ingress is a core concept of Kubernetes, the
implementation is done using an external third-party proxy,
which is known as an Ingress controller. Some examples of
Ingress controllers are Contour, nginx, and VMware NSX
Advanced Load Balancer (using Avi Kubernetes Operator,
or AKO).

Different Ingress controllers have extended the Ingress
specification in various ways to support additional use cases.
Some Ingress controllers support custom resources apart
from Ingress, and other controllers extend the functionality
using custom annotations. The most noteworthy of these
controllers is Contour, which supports both the HTTPProxy
API and the Ingress API. One of the notable differentiators of
the HTTPProxy API is that it allows administrators to
configure top-level ingress settings (for example, Virtual
Hosts per team) and then allows lower-level configuration to
be delegated to an individual team.

The desire for advanced use cases has led to issues with
different implementations and features among Ingress
controllers. The Kubernetes community is currently working
on several proposals to provide a more standardized and
highly configurable set of APIs, as an alternative to Ingress.

»» External API gateway: Because of additional service/API
requirements at the Ingress level — like rate limiting,
multi-protocol support, authorization and authentication,
and so on — another option is to use an external API

CHAPTER 4 Securing Network Communications 35

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

gateway solution — such as Spring Cloud API Gateway, Kong
Gateway, and others — to expose the service/API. Some API
gateways (like Ambassador and Gloo) also function as an
Ingress controller.

»» Ingress gateway: In some service mesh implementations
(like Istio and VMware Tanzu Service Mesh), Ingress function-
ality is provided by a gateway proxy, which is a part of the
service mesh itself and is configured using APIs provided by
the mesh. Ingress gateways in a service mesh provide more
flexibility than the Ingress API and also allow service mesh
features like encryption and routing rules to be applied to
the incoming traffic.

Securing Ingress traffic
The basic security configuration provided within the Kubernetes
Ingress API uses Transport Layer Security (TLS) to secure your
ingress traffic, which assumes that TLS is terminated at the
Ingress.

As described in the Kubernetes documentation, “Ingress is
secured by specifying a ‘Secret’ resource that contains a TLS pri-
vate key and certificate. The TLS secret must contain keys named
‘tls.crt’ and ‘tls.key’ that contain the certificate and private key to
use for TLS,” as shown in the following example:

apiVersion: v1
kind: Secret
metadata:
 name: example-secret-tls
 namespace: default
data:
 tls.crt: base64 encoded cert
 tls.key: base64 encoded key
type: kubernetes.io/tls

The secret is referenced in the Ingress API, which tells the Ingress
controller to secure communications from the client to the load
balancer using TLS. This configuration requires that the certificate
used to create the TLS secret contain a Common Name (CN) — also

36 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

known as a fully qualified domain name (FQDN) — for the host,
such as example-tls.acme.com in the following example:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: example-tls-ingress
spec:
 tls:
 - hosts:
 - example-tls.acme.com
 secretName: example-secret-tls
 rules:
 - host: example-tls.acme.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: frontend-service
 port:
 number: 80

Depending on the Ingress controller being used, other encryption
methods are also supported, including the following:

»» Mutual TLS (mTLS): Using mutual authentication, both
server and client authenticate each other’s identity by
presenting valid certificates to each other. This method is
considered more secure than the TLS option shown in the
previous example.

»» Secure Sockets Layer (SSL) passthrough: In cases where you
would like TLS to be terminated by the application itself rather
than at the Ingress, you can enable the SSL passthrough option,
supported by some advanced Ingress controllers like nginx and
VMware NSX Advanced Load Balancer. In this scenario, the
incoming SSL request is not decrypted at the load balancer.
Instead, it’s passed along to a server for decryption. This option
is preferred when application security is of top concern.

CHAPTER 4 Securing Network Communications 37

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Because TLS encryption requires certificates, it’s important to
look at options that would enable users to manage these certifi-
cates in an easy and automated way. One option is to use a certifi-
cate management controller, like cert-manager, which is native
to Kubernetes and automatically provisions SSL certificates for
your services.

Implementing authentication
and authorization
Apart from traffic encryption, you may also need to validate an
incoming request and provide access to allowed services or an
API, based on who the end user is. Various methods are supported
(depending on the Ingress controller being used or, in some cases,
by using API/Ingress gateways). Some of these methods include
the following:

»» Basic Auth: Hypertext Transfer Protocol (HTTP) Basic Auth is
a simple method that creates a username and password
authentication for HTTP requests. Using this type of authen-
tication mechanism, user credentials are encoded and sent
along with the request in a standard header.

»» API keys: API keys provide a way to authenticate an applica-
tion accessing an API, without the need for referencing an
actual user. The application adds the key to each API request,
which is used to identify the application and authorize the
request. Depending on the API, the mechanism that sends the
keys may differ. For example, some APIs may use authoriza-
tion headers, query parameters, and/or the body parameters,
and so on.

»» Open Authorization (OAuth): OAuth is a token-based
architecture that relies on the fact that the service receives
a token issued by a trusted third-party as proof that the
application can connect to the service. For example, in OAuth
2.0 flows, an external Identity Provider is used to authenti-
cate and provide user identity through an Access Token.

»» OpenID Connect (OIDC): OIDC is an extension that is built
on OAuth 2.0 and provides some additional standardiza-
tions, where the identity provider is required to also return
an ID token apart from an access token. The ID token is a
JavaScript Object Notation (JSON) Web Token (JWT)

38 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

containing identity information. The format of the ID token is
digitally signed, self-contained, and compact. The informa-
tion provided in the ID token can be passed down the
transaction chain and used to apply fine-grained attribute-
based access policies. Service Mesh implementations,
described later in this chapter, use this mechanism for
implementing authorization policies within the mesh.

Configuring other Ingress
security features
Additional security-related features can be configured at an
Ingress layer. Some of these features are included in advanced
Ingress controllers, while others may require a custom gate-
way (like an API Gateway). Some of these features include the
following:

»» Web application firewall (WAF): A WAF protects web
applications by intercepting and inspecting network packets
for threats, such as distributed denial-of-service (DDoS)
attacks and Open Web Application Security Project (OWASP)
vulnerabilities. A WAF processes traffic based on a set of
rules, such as the OWASP rule set or custom rules, to
determine if access to the application needs to be blocked.
Advanced Ingress controllers, like VMware NSX-ALB with
iWAF, offer a comprehensive set of web application security
features and helps organizations achieve and maintain
regulatory compliance, for example, with the General Data
Protection Regulation (GDPR), Health Insurance Portability
and Accountability Act (HIPAA), and Payment Card Industry
Data Security Standards (PCI DSS).

»» Rate limiting: To prevent your API from being overwhelmed
by too many requests, some Ingress controllers and API
Gateways also include options for rate shaping and throttling
of the traffic.

Depending on the Ingress controller or API Gateway implemen-
tation, the position of the different security functions (shown
in Figure 4-1) can be interchanged. Some implementations, like
VMware NSX Advanced Load Balancer, consolidate all or some of
these functions in a single Ingress solution.

CHAPTER 4 Securing Network Communications 39

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Managing and Securing Traffic between
Microservices

With a microservices-based architecture, securing communi-
cation between the services within an application becomes as
important as securing ingress traffic, particularly given that these
containers may be deployed across multiple clusters and clouds.
This is where a service mesh is needed.

A service mesh is a platform layer that provides applications
with features like service discovery, resilience, observability, and
security, without requiring application developers to integrate
or modify their code to use these services. All these features are
abstracted from developers using an architecture in which the
communication between all the services happens via a sidecar
proxy, which sits alongside each service, creating a service mesh.

FIGURE 4-1:  Additional security functions of a WAF, load balancer,
and API Gateway can be used to secure the Ingress API.

40 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Some examples of service mesh solutions include Istio, Linkerd,
VMware Tanzu Service Mesh, Consul, and Kuma. In most ser-
vice mesh implementations, sidecars are managed and config-
ured by the centralized control plane for traffic routing and policy
enforcement. In Kubernetes, the injection of the sidecar alongside
an application container is transparent to the user and happens
automatically (see Figure 4-2).

Learn more about the sidecar injection model in Istio at https://
istio.io/latest/blog/2019/data-plane-setup.

A service mesh provides secure connectivity by encrypting the
traffic between services. It also manages authentication and
authorization of service communications at scale. Authentication
policies are provided at two levels: service-to-service authentica-
tion (mTLS) and request authentication (at Ingress).

Service-to-service authentication
(mTLS)
A service mesh offers transparent mTLS between the services
inside the mesh. The service mesh provisions strong identities
to every service within a mesh with certificates, which are used
to establish mutual authentication. For this purpose, the service
mesh control plane also includes a Certificate Authority (CA) for
key and certificate management and automates their generation,
distribution, and rotation at scale. The service identity becomes
very important in securing the mesh, as it may also represent

FIGURE 4-2:  High-level architecture of a service mesh.

https://istio.io/latest/blog/2019/data-plane-setup
https://istio.io/latest/blog/2019/data-plane-setup

CHAPTER 4 Securing Network Communications 41

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

its role. There are multiple ways of determining the identity of
a service.

Istio’s identity model uses the first-class service identity to
determine the identity of a service. Some examples that Istio can
use for service identities on various platforms (per Istio’s docu-
mentation) include the following:

»» Kubernetes service account on Kubernetes

»» Google Cloud Platform (GCP) service account on Google
Compute Engine (GCE)

»» On-premises non-Kubernetes (Istio can use other identities
like user account, custom service account, or even service
names that can group workload instances)

Figure 4-3 shows how identity provisioning is done in Istio.

FIGURE 4-3:  Identity provisioning workflow.
Source: https://istio.io/latest/docs/concepts/security

https://istio.io/latest/docs/concepts/security

42 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

After the identities are determined, Istio provisions keys and cer-
tificates through the Envoy secret discovery service (SDS) using
the following flow (as written in the Istio documentation):

1.	 istiod (Istio’s control plane) offers a Google Remote
Procedure Call (gRPC) service to take certificate signing
requests (CSRs).

2.	 Envoy (sidecar proxy) sends a certificate and key request via
the Envoy SDS API.

3.	 Upon receiving the SDS request, the Istio agent (which runs
alongside each sidecar proxy) creates the private key and CSR
before sending the CSR with its credentials to istiod for
signing.

4.	 The CA validates the credentials carried in the CSR and signs
the CSR to generate the certificate.

5.	 The Istio agent sends the certificate received from istiod
and the private key to Envoy via the Envoy SDS API.

This CSR process repeats periodically for certificate and key
rotation.

The following is an example of an Istio peer authentication pol-
icy that specifies that transport authentication for the workloads
with the app:acme label must use mTLS (that is, STRICT mode).

apiVersion: "security.istio.io/v1beta1"
kind: "PeerAuthentication"
metadata:
 name: "example-acme-policy"
 namespace: "foo"
spec:
 selector:
 matchLabels:
 app: acme
 mtls:
 mode: STRICT

Some service mesh implementations, like Istio, also allow you
to either disable mTLS or configure a PERMISSIVE mode, which
allows the services to accept both plaintext and mTLS traffic. This
capability helps to easily migrate applications to mTLS in a non-
disruptive manner.

CHAPTER 4 Securing Network Communications 43

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Request authentication (at Ingress)
Most service meshes provide their own gateway implementation
for controlling Ingress traffic to the mesh. In some cases, these
implementations also integrate with API gateways to provide
advanced API management features. Because the Ingress Gateway
in a service mesh is a part of the mesh, the policies of the mesh
(like encryption and traffic routing) can also be applied to traffic
from the Ingress Gateway to the back-end services.

Based on the service mesh implementation, the Ingress Gateway
provides similar security capabilities as described in the “Secur-
ing Ingress Traffic” section in this chapter, whether it’s secur-
ing traffic using TLS/mTLS at the Ingress or letting users provide
authentication and authorization policies.

For example, in Istio, users can configure authentication policies
to validate a JSON Web Token (JWT) in the request based on cer-
tain values, which among others, may include the following:

»» The token location

»» The issuer

»» The public JSON Web Key Set (JWKS)

Based on the authentication policy, Istio validates the token to
accept or reject the request.

The following is an example that requires a valid JWT for all
requests for workloads that have the app:frontend label issued
by issuer-acme.

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: frontend
 namespace: acme
spec:
 selector:
 matchLabels:
 app: frontend
 jwtRules:
 - issuer: "issuer-acme"

44 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If no token is found, Istio accepts the request by default but won’t
provide an authenticated identity. To reject requests without
tokens, a user needs to provide authorization rules that spec-
ify the restrictions for specific operations (for example, paths or
actions).

Authorization
Using service mesh, users can enforce access control for the
workloads within the mesh by configuring authorization policies.
These policies are enforced at runtime by a server-side sidecar
proxy on the incoming traffic. For each request that is passed
through the proxy, the request context is evaluated by the author-
ization engine against the authorization policies, to either allow
or deny the request.

Authorization policies can be configured based on the various
attributes, which could either be based on service attributes like
its identity, name, namespace, and so on, or even request attri-
butes which are fetched at the authentication phase (for example,
from JWT).

The following example of Istio’s AuthorizationPolicy requires
valid request principals (derived from JWT Authentication) for a
request to /admin path. If not present, the request is denied.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: frontend-admin
 namespace: acme
spec:
 selector:
 matchLabels:
 app: frontend
 action: DENY
 rules:
 - to:
 - operation:
 paths: ["/admin"]
 from:
 - source:
 notRequestPrincipals: ["*"]

CHAPTER 4 Securing Network Communications 45

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Advanced use cases
Security and infrastructure markets are rapidly evolving, and a
service mesh can’t assume it has access to all data for all attri-
butes natively or expect to understand the relevant semantics.
Some advanced service mesh implementations, like VMware
Tanzu Service Mesh, also provide an extensible data integra-
tion framework to which third-party solutions can write a plu-
gin. Using the additional data, Tanzu Service Mesh has the ability
to access and aggregate this context and enable policy decisions
against it. The context spans intrinsic data such as an inventory
of users, services, data from various infrastructure platforms,
and extrinsic data such as user and application life-cycle behavior
(see Figure 4-4).

This context awareness in VMware Tanzu Service Mesh is accom-
panied by a flexible query language that allows resource groups
to be defined based on a richer set of attributes (for example, all
workloads exhibiting a certain type of vulnerability, or showing
risky behavior based on their security posture scores, and so on).
Using these resource groups, users can define more evolved access
control policies that go beyond defining control on a hop-to-hop
basis to specifying end-to-end transactions that need to be
protected.

Also, as applications are becoming more distributed and can span
multiple clusters or even clouds, it’s becoming a requirement to
be able to apply the security policies not only within the mesh
microservices but also across them.

For example, VMware Tanzu Service mesh provides a strong and
flexible construct called Global Namespaces (GNS), which can slice
a cluster into many service mesh zones and extend each of them
to multiple clusters and/or infrastructures (see Figure 4-5). Each
GNS manages its own service discovery, observability, encryption,
traffic and security policies, and service-level agreements (SLAs).

FIGURE 4-4:  VMware Tanzu Service Mesh policy framework.

46 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This enables enterprises to be able to apply consistent security
policies within a GNS boundary, irrespective of where their appli-
cation services are deployed (for example, mTLS between services
within a GNS across multiple clusters or clouds).

Ensuring observability
The ability to monitor connectivity between services is the main
driver for adoption of service meshes. The proxies provide statis-
tics about the rate, latency, and failures of API calls.

More advanced observability, called distributed tracing, can be
gained by enabling and monitoring span headers across API calls.
These headers are propagated from an incoming API call to the
resulting outbound calls. Distributed tracing allows developers
and operators to identify the root cause of a slow or failed request
to an application by evaluating each interaction between the dif-
ferent microservices involved in serving that request.

When it comes to security, observability serves multiple purposes,
including the following:

»» Support for access control policy management: Service-to-
service traffic statistics are used to build a map of connections
between services. This map can be translated to a least privilege
access control policy, where only traffic that has been observed
in the past is allowed in the future.

FIGURE 4-5:  A GNS having workloads spanning across multiple clusters in
Tanzu Service Mesh.

CHAPTER 4 Securing Network Communications 47

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Threat detection: Layer 7 traffic statistics can be used to
create a behavior profile for each microservice. When the
profile is stable, any significant deviation could be inter-
preted as an anomalous behavior that may be due to a
compromise of that workload.

»» Attack investigation: After a possible attack has been
identified, the SecOps team starts investigating to identify
the origin of the breach and its extent. In cloud-native
environments where east–west traffic is dominant, distrib-
uted tracing capabilities are crucial for a quick and compre-
hensive investigation.

Pattern-based intrusion prevention
systems (IPS) and deep packet
inspection (DPI)
To prevent lateral movement between containers by an attacker,
you need to insert IPS at the network level, but this requires the
ability to monitor east–west traffic at scale. The challenge is that
traditional IPS requires traffic to be backhauled to physical or
virtual appliances, creating major scalability and latency issues
while requiring you to completely re-architect your network — a
time-intensive and error-prone process that introduces complex-
ity. In addition, traditional IPS solutions do not have the applica-
tion context to allow certain types of traffic to pass through while
blocking other types of traffic.

Enterprise security in the microservices world requires a dis-
tributed and services-defined approach to IPS. Your IPS solution
should provide visibility into all port-to-port traffic, allowing you
to detect malicious traffic and use:

»» Behavioral analysis such as network traffic analysis (NTA) and
anomaly detection to recognize and stop abnormal behavior

»» Deep packet inspection to decrypt and examine malicious
traffic that may be hidden in Transport Layer Security (TLS)
encrypted sessions

Delivering security as code to every workload at the hypervisor
level ensures that all traffic — whether it’s contained inside the
data center or flows across multiple cloud providers, and whether
segmentation has been applied — can be monitored for malicious
content to prevent the lateral spread of attacks.

48 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CUSTOMER SUCCESS STORY
Increased competition and rising customer expectations were putting
pressure on a Fortune 50 financial services company. The company’s
leadership knew that it needed to be more agile while providing pow-
erful, frictionless experiences to consumers and adhering to the com-
pany’s strict security, audit, and compliance requirements.

How could it enable business agility while meeting robust security and
regulatory requirements in a consistent manner?

The agility part was obvious. The company needed to embrace mod-
ern, cloud-native applications in a microservices architecture.
However, making sure modern applications follow enterprise security
policies and compliance is another issue altogether. Security is typi-
cally bolted on after the fact and tied to infrastructure rather than the
actual workload, making it nearly impossible to know whether policies
are being enforced appropriately at the app or user level.

The financial services company worked with VMware to modernize its
security operations for multi-cloud, embracing a software-defined
approach with central management across all environments. The idea
was to tie security to each individual workload, so that each time a
workload comes online a set of tags associated with an application
will trigger the deployment of specific policies at each layer of the
infrastructure stack across any underlying infrastructure. Policies stay
with the workload and evolve as needed throughout its life cycle —
whether it’s in the public cloud or on premises, or it flows across mul-
tiple environments.

The financial services company followed five steps to successfully
migrate its legacy apps to the cloud:

1.	 Define applications and security dependencies up front using
GitOps.

2.	 Automate standard known dependencies, connectivity, and secu-
rity posture through a workflow.

3.	 Immediately reject or flag applications that do not adhere to stan-
dard security posture. Exceptions can still be approved but need
human interaction.

CHAPTER 4 Securing Network Communications 49

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

4.	 Use a service mesh for monitoring and enforcement to ensure
that the correct policy has been implemented.

This intrinsic security framework creates a foundation for how users
and applications connect and interact together while giving the IT
organization an end-to-end understanding of security. The framework
is simple, it’s integrated seamlessly with legacy systems, and it can be
extended to any environment.

CHAPTER 5 Ten Resources to Help You Get Started with Container Network Security 51

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Reading analyst research, blogs, and
books

»» Taking courses and getting certified

»» Watching demos and presentations

»» Looking at documentation and product
pages

»» Referencing frameworks and
participating in special interest groups

»» Viewing videos and webinars

Ten Resources to Help
You Get Started with
Container Network
Security

Ready to get started? The following resources and tutorials
will enhance your understanding of container network
security and help you get started.

Analyst Research
Get an independent analyst’s view on the state of container
security:

»» Forrester Research: Best Practices for Container Security:
https://hello-tanzu.vmware.com/best-practices-
for-container-security/

https://hello-tanzu.vmware.com/best-practices-for-container-security/
https://hello-tanzu.vmware.com/best-practices-for-container-security/

52 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Gartner’s Best Practices for Running Containers and
Kubernetes in Production: www.gartner.com/en/
documents/3988395/best-practices-for-running-
containers-and-kubernetes-in-

Blogs
Many container network security experts are blogging about les-
sons learned and sharing their knowledge on how to secure mod-
ern applications. Follow their conversations:

»» Multi-Cloud Connectivity and Security Needs of
Kubernetes Applications: https://blogs.vmware.com/
networkvirtualization/2021/05/multi-cloud-
connectivity-security-kubernetes.html

»» Announcing the General Availability of Container Security
in VMware Carbon Black Cloud: www.carbonblack.com/
blog/announcing-the-general-availability-of-
container-security-in-the-vmware-carbon-black-
cloud/

»» VMware to Help Customers Make Modern Apps More
Secure with Intent to Acquire Mesh7: https://blogs.
vmware.com/networkvirtualization/2021/03/vmware-
announces-mesh7.html

»» Forging a Path to Continuous, Risk-based Security with
VMware Tanzu Service Mesh: https://blogs.vmware.
com/networkvirtualization/2020/03/risk-based-
security.html

Books
When you’re looking for ways to secure container networks in
your organization, get practical guides from technical experts
with previous delivery experience:

»» Core Kubernetes by Jay Vyas and Chris Love (www.manning.
com/books/core-kubernetes)

https://www.gartner.com/en/documents/3988395/best-practices-for-running-containers-and-kubernetes-in-
https://www.gartner.com/en/documents/3988395/best-practices-for-running-containers-and-kubernetes-in-
https://www.gartner.com/en/documents/3988395/best-practices-for-running-containers-and-kubernetes-in-
https://blogs.vmware.com/networkvirtualization/2021/05/multi-cloud-connectivity-security-kubernetes.html
https://blogs.vmware.com/networkvirtualization/2021/05/multi-cloud-connectivity-security-kubernetes.html
https://blogs.vmware.com/networkvirtualization/2021/05/multi-cloud-connectivity-security-kubernetes.html
https://www.carbonblack.com/blog/announcing-the-general-availability-of-container-security-in-the-vmware-carbon-black-cloud/
https://www.carbonblack.com/blog/announcing-the-general-availability-of-container-security-in-the-vmware-carbon-black-cloud/
https://www.carbonblack.com/blog/announcing-the-general-availability-of-container-security-in-the-vmware-carbon-black-cloud/
https://www.carbonblack.com/blog/announcing-the-general-availability-of-container-security-in-the-vmware-carbon-black-cloud/
https://blogs.vmware.com/networkvirtualization/2021/03/vmware-announces-mesh7.html
https://blogs.vmware.com/networkvirtualization/2021/03/vmware-announces-mesh7.html
https://blogs.vmware.com/networkvirtualization/2021/03/vmware-announces-mesh7.html
https://blogs.vmware.com/networkvirtualization/2020/03/risk-based-security.html
https://blogs.vmware.com/networkvirtualization/2020/03/risk-based-security.html
https://blogs.vmware.com/networkvirtualization/2020/03/risk-based-security.html
https://www.manning.com/books/core-kubernetes
https://www.manning.com/books/core-kubernetes

CHAPTER 5 Ten Resources to Help You Get Started with Container Network Security 53

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Learn Kubernetes Security by Kaizhe Huang and Pranjal
Jumde (www.amazon.com/dp/1839216506)

»» Container Security by Liz Rice (https://www.amazon.com/
dp/1492056707)

Courses and Certifications
Developers and platform operators alike need to learn how to
secure applications and platforms. Why not take a class to enrich
your understanding? There are many free and low-cost options,
including the following:

»» Kubernetes Security Essentials: https://training.
linuxfoundation.org/training/
kubernetes-security-essentials-lfs260

»» Kubernetes Security Fundamentals: https://training.
linuxfoundation.org/training/
kubernetes-security-fundamentals-lfs460

»» Networking in Kubernetes: https://kube.academy/
courses/networking-in-kubernetes

»» Kubernetes Platform Security: https://kube.academy/
courses/kubernetes-platform-security

»» Kubernetes Networking Deep Dive: www.ipspace.net/
Kubernetes_Networking_Deep_Dive

»» Interacting with Kubernetes – Introduction to Ingress:
https://kube.academy/lessons/introduction-to-
ingress

»» Kubernetes Security: www.infosecinstitute.com/
skills/courses/kubernetes-security

»» Service Mesh Fundamentals: https://training.
linuxfoundation.org/training/service-mesh-
fundamentals-lfs243

The Linux Foundation offers a Certified Kubernetes Security Spe-
cialist (CKS) program to provide assurance that a CKS has the
skills, knowledge, and competence on a broad range of best prac-
tices for security container-based applications and Kubernetes
platforms during build, deployment, and runtime. Learn more

https://www.amazon.com/dp/1839216506
https://www.amazon.com/dp/1492056707
https://www.amazon.com/dp/1492056707
https://training.linuxfoundation.org/training/kubernetes-security-essentials-lfs260
https://training.linuxfoundation.org/training/kubernetes-security-essentials-lfs260
https://training.linuxfoundation.org/training/kubernetes-security-essentials-lfs260
https://training.linuxfoundation.org/training/kubernetes-security-fundamentals-lfs460
https://training.linuxfoundation.org/training/kubernetes-security-fundamentals-lfs460
https://training.linuxfoundation.org/training/kubernetes-security-fundamentals-lfs460
https://kube.academy/courses/networking-in-kubernetes
https://kube.academy/courses/networking-in-kubernetes
https://kube.academy/courses/kubernetes-platform-security
https://kube.academy/courses/kubernetes-platform-security
https://www.ipspace.net/Kubernetes_Networking_Deep_Dive
https://www.ipspace.net/Kubernetes_Networking_Deep_Dive
https://kube.academy/lessons/introduction-to-ingress
https://kube.academy/lessons/introduction-to-ingress
https://www.infosecinstitute.com/skills/courses/kubernetes-security
https://www.infosecinstitute.com/skills/courses/kubernetes-security
https://training.linuxfoundation.org/training/service-mesh-fundamentals-lfs243
https://training.linuxfoundation.org/training/service-mesh-fundamentals-lfs243
https://training.linuxfoundation.org/training/service-mesh-fundamentals-lfs243

54 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

at https://training.linuxfoundation.org/certification/
certified-kubernetes-security-specialist. Prep courses for
the CKS certification include the following:

»» Kubernetes CKS 2021 Complete Course + Simulator:
www.udemy.com/course/certified-kubernetes-
security-specialist

»» Abdennour T’s References for CKS Exam Objectives –
Certified Kubernetes Security Specialist: https://
github.com/abdennour/certified-kubernetes-
security-specialist

Demos and Presentations
When you’re ready to take a deeper dive into container network
security, why not get a demo from the technical experts to help
you understand what’s going on “under the hood”? Take a look at
the following demos:

»» Master Kubernetes with NSX: https://nsx.techzone.
vmware.com/kubernetes-nsx

»» Improving Container Security with VMware Tanzu Build
Service and VMware Tanzu Application Catalog:
https://youtu.be/ZbtUfTsjaAs

View Tim Hockin’s illustrated guide to Kubernetes Networking.
Tim is a co-founder of the Kubernetes project and a principal
software engineer at Google; he gives talks on Kubernetes,
networking, storage, node, multi-cluster, resource isolation,
and cluster sharing (https://speakerdeck.com/thockin/
illustrated-guide-to-kubernetes-networking).

Documentation and Product Pages
When all else fails, read the manual! These links to official
documentation and product pages will help you find the answers
you need:

https://training.linuxfoundation.org/certification/certified-kubernetes-security-specialist
https://training.linuxfoundation.org/certification/certified-kubernetes-security-specialist
https://www.udemy.com/course/certified-kubernetes-security-specialist
https://www.udemy.com/course/certified-kubernetes-security-specialist
https://github.com/abdennour/certified-kubernetes-security-specialist
https://github.com/abdennour/certified-kubernetes-security-specialist
https://github.com/abdennour/certified-kubernetes-security-specialist
https://nsx.techzone.vmware.com/kubernetes-nsx
https://nsx.techzone.vmware.com/kubernetes-nsx
https://youtu.be/ZbtUfTsjaAs
https://speakerdeck.com/thockin/illustrated-guide-to-kubernetes-networking
https://speakerdeck.com/thockin/illustrated-guide-to-kubernetes-networking

CHAPTER 5 Ten Resources to Help You Get Started with Container Network Security 55

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Kubernetes Service: https://kubernetes.io/docs/
concepts/services-networking/service

»» Kubernetes Networking: https://kubernetes.io/docs/
concepts/cluster-administration/networking

»» Antrea: https://antrea.io/docs/v0.13.1

»» VMware Tanzu Service Mesh on Tanzu: https://tanzu.
vmware.com/service-mesh

»» VMware Tanzu Service Mesh on VMware.com: www.
vmware.com/products/tanzu-service-mesh.html

»» VMware Tanzu Service Mesh Documentation: https://
docs.vmware.com/en/VMware-Tanzu-Service-Mesh/
index.html

»» VMware Carbon Black: www.carbonblack.com/products/
vmware-carbon-black-cloud-container

»» VMware NSX Distributed IDS/IPS: www.vmware.com/
products/nsx-distributed-ids-ips.html

»» VMware NSX Advanced Load Balancer: www.vmware.com/
products/nsx-advanced-load-balancer.html

»» VMware NSX Advanced Threat Protection: www.vmware.
com/products/nsx-advanced-threat-prevention.html

»» VMware Intrinsic Security: www.vmware.com/security.html

Frameworks
The MITRE Adversarial Tactics, Techniques, and Common
Knowledge (ATT&CK) framework is a globally accessible knowl-
edge base of adversary tactics and techniques based on real-world
observations. Refer to the MITRE ATT&CK framework for com-
mon exploits to the Linux platform (https://attack.mitre.
org/matrices/enterprise/linux).

https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://kubernetes.io/docs/concepts/cluster-administration/networking
https://antrea.io/docs/v0.13.1
https://tanzu.vmware.com/service-mesh

https://tanzu.vmware.com/service-mesh

https://www.vmware.com/products/tanzu-service-mesh.html
https://www.vmware.com/products/tanzu-service-mesh.html
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html
https://docs.vmware.com/en/VMware-Tanzu-Service-Mesh/index.html
https://www.carbonblack.com/products/vmware-carbon-black-cloud-container
https://www.carbonblack.com/products/vmware-carbon-black-cloud-container
https://www.vmware.com/products/nsx-distributed-ids-ips.html
https://www.vmware.com/products/nsx-distributed-ids-ips.html
https://www.vmware.com/products/nsx-advanced-load-balancer.html
https://www.vmware.com/products/nsx-advanced-load-balancer.html
https://www.vmware.com/products/nsx-advanced-threat-prevention.html
https://www.vmware.com/products/nsx-advanced-threat-prevention.html
https://www.vmware.com/security.html
https://attack.mitre.org/matrices/enterprise/linux
https://attack.mitre.org/matrices/enterprise/linux

56 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Special Interest Groups
Join the Kubernetes Special Interest Groups to post questions and
connect with your fellow container network security engineers in
the industry:

»» Cloud Native Computing Foundation (CNCF) Special
Interest Group on Security: Secure access, policy control,
privacy, auditing, and more (https://github.com/cncf/
sig-security)

»» CNCF Special Interest Group on Networking: Networking
primitives, including load balancing, observability, authenti-
cation, authorization, policy, rate limiting, quality of service
(QoS), mesh networks, legacy infrastructure bridging, and
more (https://github.com/cncf/sig-network)

Videos
You can find a wealth of videos on container network security
from practitioners and trainers:

»» Advanced Persistence Threats: The Future of Kubernetes
Attacks, by Ian Coldwater and Brad Geesaman (https://
youtu.be/auUgVullAWM)

»» The Devil in the Details: Kubernetes’ First Security
Assessment, by Aaron Small, Google, and Jay Beale,
InGuardians (https://youtu.be/vknE5XEa_Do)

»» Keynote: SIG-Honk AMA Panel: Hacking and Hardening
in the Cloud Native Garden (https://youtu.be/
CAZ5s0zli6g)

»» Keynote: Hello From the Other Side: Dispatches From a
Kubernetes Attacker, by Ian Coldwater (https://youtu.
be/3jGNjan6I3Y)

»» Kubernetes/Container Security, by Ian Coldwater, PSW
#640 (https://youtu.be/vuaoVUD-TJU)

https://github.com/cncf/sig-security
https://github.com/cncf/sig-security
https://github.com/cncf/sig-network
https://youtu.be/auUgVullAWM
https://youtu.be/auUgVullAWM
https://youtu.be/vknE5XEa_Do
https://youtu.be/CAZ5s0zli6g
https://youtu.be/CAZ5s0zli6g
https://youtu.be/3jGNjan6I3Y
https://youtu.be/3jGNjan6I3Y
https://youtu.be/vuaoVUD-TJU

CHAPTER 5 Ten Resources to Help You Get Started with Container Network Security 57

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Kubernetes Security Best Practices, by Ian Lewis, Google
(https://youtu.be/wqsUfvRyYpw)

»» Kubernetes: Vulnerabilities, Efficiency, and Cloud
Security | Cyber Work Podcast (https://youtu.be/
KKGePS4hj9M)

»» New Security Features In Kubernetes 1.18, by Haim
Helman, VMware (https://youtu.be/oRJtixU8Coc)

»» Seccomp Security Profiles and You: A Practical Guide, by
Duffie Cooley, VMware (https://youtu.be/OPuu8wsu2Zc)

»» Service Mesh Security in a Nutshell, by Venil Noronha and
Manish Chugtu, VMware (https://youtu.be/liu51fCC3N4)

»» The ABCs of Kubernetes Security, by Roger Klorese and
Danny Sauer, SUSE (https://youtu.be/tGg_IjPLB20)

»» The Path Less Traveled: Abusing Kubernetes Defaults, by
Ian Coldwater and Duffie Cooley (https://youtu.be/
HmoVSmTIOxM)

Webinars
Tune into webinars to get caught up on the latest trends on con-
tainer network security from industry experts:

»» Securing Containers and Kubernetes-Orchestrated
Environments: www.carbonblack.com/resources/
securing-containers-and-kubernetes-orchestrated-
environments

»» Achieve Application Scalability with Tanzu Service Mesh:
https://tanzu.vmware.com/content/webinars/mar-11-
achieve-application-scalability-with-tanzu-
service-mesh

»» Deploy Secure, Scalable Kubernetes Apps with Tanzu
Service Mesh and Ingress Services: https://info.
avinetworks.com/webinars/kubernetes-apps-
service-mesh-ingress-services

https://youtu.be/wqsUfvRyYpw
https://youtu.be/KKGePS4hj9M
https://youtu.be/KKGePS4hj9M
https://youtu.be/oRJtixU8Coc
https://youtu.be/OPuu8wsu2Zc
https://youtu.be/liu51fCC3N4
https://youtu.be/tGg_IjPLB20
https://youtu.be/HmoVSmTIOxM
https://youtu.be/HmoVSmTIOxM
https://www.carbonblack.com/resources/securing-containers-and-kubernetes-orchestrated-environments
https://www.carbonblack.com/resources/securing-containers-and-kubernetes-orchestrated-environments
https://www.carbonblack.com/resources/securing-containers-and-kubernetes-orchestrated-environments
https://tanzu.vmware.com/content/webinars/mar-11-achieve-application-scalability-with-tanzu-service-mesh
https://tanzu.vmware.com/content/webinars/mar-11-achieve-application-scalability-with-tanzu-service-mesh
https://tanzu.vmware.com/content/webinars/mar-11-achieve-application-scalability-with-tanzu-service-mesh
https://info.avinetworks.com/webinars/kubernetes-apps-service-mesh-ingress-services
https://info.avinetworks.com/webinars/kubernetes-apps-service-mesh-ingress-services
https://info.avinetworks.com/webinars/kubernetes-apps-service-mesh-ingress-services

58 Container Network Security For Dummies, VMware Special Edition

These materials are © 2021 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

»» Securing and Accelerating the Kubernetes CNI Data Plane
with Project Antrea and NVIDIA Mellanox ConnectX
SmartNICs: www.cncf.io/webinars/securing-and-
accelerating-the-kubernetes-cni-data-plane-with-
project-antrea-and-nvidia-mellanox-connectx-
smartnics

»» Zero Trust Security for Cloud Native Apps: www.cncf.io/
webinars/zero-trust-security-for-cloud-native-apps

https://www.cncf.io/webinars/securing-and-accelerating-the-kubernetes-cni-data-plane-with-project-antrea-and-nvidia-mellanox-connectx-smartnics
https://www.cncf.io/webinars/securing-and-accelerating-the-kubernetes-cni-data-plane-with-project-antrea-and-nvidia-mellanox-connectx-smartnics
https://www.cncf.io/webinars/securing-and-accelerating-the-kubernetes-cni-data-plane-with-project-antrea-and-nvidia-mellanox-connectx-smartnics
https://www.cncf.io/webinars/securing-and-accelerating-the-kubernetes-cni-data-plane-with-project-antrea-and-nvidia-mellanox-connectx-smartnics
https://www.cncf.io/webinars/zero-trust-security-for-cloud-native-apps
https://www.cncf.io/webinars/zero-trust-security-for-cloud-native-apps

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Recognizing Attack Vectors in the Software Supply Chain
	Understanding Security Risks Associated with the Rise of Container Adoption
	Attack Vectors in the Development Environment
	Account credentials
	Container images
	Application dependencies
	Image registries
	Host-container relationships
	Unsecured orchestrator platforms

	Attack Vectors in Microservices Architectures and Networks
	Inter-process communications
	Databases
	Application layer protocols
	North–south attacks

	Chapter 2 Securing the Software Development Supply Chain
	Getting Started with the NetworkPolicy API
	Looking at How Network Policies Work with Services
	Exploring Other Types of Network Policies
	Using the Kubernetes End-to-End Tests

	Chapter 3 Hardening the Workload
	Addressing Risky Configurations in Kubernetes Resources
	Container runtime
	Network exposure
	Role-based access control
	Volumes
	Secrets
	Custom resource definitions
	Other Kubernetes APIs that are risky at runtime

	Enforcing Best Practices and Policies in Kubernetes

	Chapter 4 Securing Network Communications
	Managing and Securing Ingress Access
	Securing Ingress traffic
	Implementing authentication and authorization
	Configuring other Ingress security features

	Managing and Securing Traffic between Microservices
	Service-to-service authentication (mTLS)
	Request authentication (at Ingress)
	Authorization
	Advanced use cases
	Ensuring observability
	Pattern-based intrusion prevention systems (IPS) and deep packet inspection (DPI)

	Chapter 5 Ten Resources to Help You Get Started with Container Network Security
	Analyst Research
	Blogs
	Books
	Courses and Certifications
	Demos and Presentations
	Documentation and Product Pages
	Frameworks
	Special Interest Groups
	Videos
	Webinars

	EULA

Container

